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Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An 
increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, 
and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic 
lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by 
promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this 
review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endome-
triosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
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Introduction

Endometriosis is one of the most common gynecologi-
cal diseases. It is a chronic disorder that affects 10% of all 
women of reproductive age, characterized by the presence 
of endometrial tissue outside the uterine cavity [1]. This dis-
ease can cause long-term chronic pelvic pain, dysmenorrhea, 
severe dyspareunia, infertility and pelvic-organ dysfunction 
[2]. Despite improvements in the diagnosis and understand-
ing of endometriosis, many patients with endometriosis suf-
fer due to ineffective non-invasive diagnostic methods and 
treatments, which are often associated with multiple side 

effects and high-recurrence rates [3, 4]. Therefore, endome-
triosis profoundly impairs the quality of life of the patients 
with a negative impact on social and family life, and high-
healthcare costs [5, 6].

Although the pathophysiology of endometriosis is not 
fully understood, accumulating evidence indicates that com-
binations of hormonal, immunologic, genetic and environ-
mental factors are involved in the origin and development of 
endometriosis [1]. Evidence suggests that aberrant immuno-
logic and inflammatory responses, in particular, increased 
levels of pro-inflammatory cytokines, such as tumor necro-
sis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-17A, 
are present in the serum, peritoneal fluid (PF) and ectopic 
lesions of patients with endometriosis [7–16]. Due to the 
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crucial role of inflammatory immune responses in the devel-
opment and progression of endometriosis, this disease is 
considered to be an immune-related chronic inflammatory 
disease [17–19]. Subsequently, these pro-inflammatory 
cytokines have been investigated as possible non-invasive 
serum biomarkers for diagnosis [13, 14, 20–22] or potential 
targets for treatment of endometriosis [23–29], although cer-
tain findings have been contradictory [30–33].

The human immune response is mediated by a highly 
complex network of regulatory elements. Among these, 
anti-inflammatory cytokines are a series of immunoregula-
tory molecules that control the pro-inflammatory cytokine 
response [34]. Under physiological conditions, anti-inflam-
matory cytokines limit the potentially damaging effects 
of sustained or excessive inflammatory reactions. Under 
pathological conditions, anti-inflammatory mediators may 
have insufficient control over pro-inflammatory activi-
ties in immune-mediated diseases, or overcompensate and 
inhibit the immune response, increasing the risk of systemic 
infection.

As early as the 1990s, studies reported that anti-inflam-
matory cytokines (such as IL-10 and IL-4) were also ele-
vated in the peripheral blood and PF of patients with endo-
metriosis [35–37]; however, this did not receive widespread 
attention. In the past 10 years, the differential expression 
of these anti-inflammatory cytokines and their role in the 
pathogenesis of endometriosis has been gradually revealed. 
From an immunological viewpoint, studies have indicated 
that endometriosis is not just an inflammatory disorder, 

but a disease associated with pro-inflammation and anti-
inflammation activity. Therefore, the aim of this review is 
to discuss the changes, cell and tissue origin, regulatory 
factors and role of anti-inflammatory cytokines associated 
with endometriosis, and in particular, the communication 
between endometrial cells and immune cells in the ectopic 
lesion microenvironment (Fig. 1).

Anti‑inflammatory cytokines

T helper (TH) 2 cytokines

IL-4 and IL-10 family proteins are the main Th2 anti-
inflammatory cytokines. Several lines of evidence indicate 
that the Th2 immune response is associated with endome-
triosis [38, 39]. As shown in Table 1, accumulating evi-
dence has demonstrated that anti-inflammatory cytokines 
IL-4 [38–41] and IL-10 [40, 42–46] are sharply increased 
in peripheral lymphocytes and the ectopic endometrium of 
women with endometriosis. Notably, a significant increase 
in IL-4 [44, 47, 48] and IL-10 levels [39, 46, 48–55] in 
PF from women with endometriosis was observed, par-
ticularly in cases of advanced endometriosis [44, 48, 50, 
53, 54]; however, three other research groups reported 
no change in IL-4 and/or IL-10 in the serum and PF of 
endometriosis patients [56–58]. Inconsistencies may be 
due to differences in patient selection, such as whether 
the patients were infertile or not and whether there was 

Fig. 1   Schematic presentation of the anti-inflammatory cytokines 
that contribute to development of endometriosis. In the endometri-
otic microenvironment, endometrial cells, peritoneal mesothelial cells 
and various immune cells (such as macrophages, and T and natural 
killer cells) produce anti-inflammatory cytokines (e.g., IL-4, IL-10 
and TGF-β1), which have a critical role in accelerating the growth, 

adhesion, invasion, epithelial-mesenchymal transition (EMT), mes-
othelial-to-mesenchymal transition (MMT), fibroblast-to-myofibro-
blast transdifferentiation (FMT), smooth muscle metaplasia (SMM), 
fibrogenesis and angiogenesis of ectopic lesions, and impairment of 
immune surveillance
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variation endometriosis subtypes (ovarian endometrioma, 
superficial peritoneal endometriosis, deep infiltrating 
endometriosis). Additionally, adolescents with endome-
triosis were reported to have significantly increased IL-4 
in serum and PF, suggesting that IL-4 could be a potential 
biomarker for identifying endometriosis [47]. Further-
more, IL-10 promoter 592A/C and 819T/C polymorphisms 
have been reported to be associated with endometriosis 
risk in a Chinese population [51, 59], and considered to 
increase susceptibility to advanced endometriosis [43]. As 
a type of Th2 cytokine, IL-13 shares homology with IL-4, 

interacts with IL-4 receptor and attenuates monocyte/
macrophage function (downregulates the production of 
TNF-α, IL-1 and IL-8 by monocytes) [60]. Chegini et al. 
have reported that IL-13 is elevated in the endometriotic 
endometrium and PF in patients with endometriosis [61]; 
however, no difference in IL-13 in the peripheral blood 
[14, 62] and PF [49, 63] was observed in endometriosis 
patients. Differences in the clinical staging of disease and 
the phases of the menstrual cycle in patients may be fac-
tors that cause the inconsistent conclusions among differ-
ent studies.

Table 1   The change of anti-
inflammatory cytokines in 
endometriosis

NS, no significant difference; –, no data

Classification Cytokine Location Change (EMS vs 
Control)

References

Th2 cytokine IL-4 Peripheral blood ↑ [38–41, 47]
NS [46]

Peritoneal fluid ↑ [44, 47, 48]
NS [46]

Ectopic lesion ↑ [38, 39]
IL-10 Peripheral blood ↑ [40, 42–44, 46, 55]

NS [46, 57, 58]
Peritoneal fluid ↑ [39, 46, 48–54]

NS [46, 57, 58]
Ectopic lesion ↑ [42, 45]

IL-13 Peripheral blood NS [14, 40, 62]
Peritoneal fluid NS [49, 63]

↑ [61]
Ectopic lesion ↑ [61]

Growth factor TGF-β Peripheral blood ↓ [46, 67]
Peritoneal fluid ↑ [46, 48, 54, 74–77]
Ectopic lesion ↑ [45, 48, 68–73]

Innate cytokine IL-25 Peripheral blood ↑ [97]
Peritoneal fluid – –
Ectopic lesion – –

IL-33 Peripheral blood ↑ [95]
Peritoneal fluid ↑ [95]

NS [55]
Ectopic lesion ↑ [95, 96]

TSLP Peripheral blood ↑ [94]
Peritoneal fluid ↑ [94]
Ectopic lesion – –

Other cytokines IL-1RA Peripheral blood ↑ [40, 98]
NS [99]

Peritoneal fluid ↑ [98]
↓ [99]

Ectopic lesion – –
IL-37 Peripheral blood ↑ [44, 58, 104]

Peritoneal fluid ↑ [58, 104]
Ectopic lesion ↑ [103]
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Transforming growth factor (TGF)‑β

TGF-β is a multifunctional growth factor that has important 
regulatory effects on many developmental and physiological 
processes. TGF-β was initially identified as a potent chemot-
actic cytokine that initiates inflammation and its overexpres-
sion mediates inflammation in the skin [64]; however, the 
severe and uncontrolled inflammatory reactions observed in 
the TGF-β knockout mouse indicated that the physiologi-
cal role of TGF-β is predominantly as an anti-inflammatory 
cytokine [65]. Its immunosuppressive functions include the 
inhibition or reversal of macrophage activation, resulting in 
downregulated release of pro-inflammatory cytokines, and 
reactive oxygen and nitrogen species [66]. Numerous stud-
ies have confirmed that the levels of TGF-β are significantly 
higher in the peripheral blood [46, 67], ectopic endome-
trium (e.g., endometriotic cystic wall) [45, 48, 68–73] and 
PF [46, 48, 54, 74–77] of patients with endometriosis than 
in controls.

IL‑25, IL‑33, and thymic stromal lymphopoietin 
(TSLP)

The endogenous cytokines IL-25 (or IL-17E) [78–80], IL-33 
[81, 82], and TSLP [83–86] have a role in the maturation of 
Th2 cells via dendritic cell activation. IL-25 [87–89], IL-33 
[88, 89], and TSLP [89, 90] also induce activation of and 
IL-13 production from innate immune cells, including type 
2 innate lymphoid cells. These cytokines have important 
regulatory roles in allergic diseases, such as asthma [89]. 
Previous studies have reported a higher prevalence of aller-
gic disease among women with endometriosis [91, 92]. Type 
1 allergies develop in a Th2 cytokine environment. Increas-
ing evidence has shown that IL-33 and TSLP are increased 
in the peripheral blood [93–95], endometriotic endometrium 
[93–96], and PF [94] of patients with endometriosis. Nota-
bly, IL-33 and soluble ST2 (sST2) levels in PF or endome-
triotic lesions were correlated with endometriosis severity 
[95, 96]. However, Jaeger-Lansky et al. observed a similar 
level of IL-33 in the PF between endometriosis and control 
individuals [55]; however, it should be noted that the PF 
collected in this study was a mixture of free fluid in the 
recto-uterine pouch and fluid from genital organs washed 
with saline solution [55]. One study reported that levels of 
IL-25 are higher in PF from endometriosis patients; how-
ever, IL-25 levels were not correlated with disease stage 
[97]. Unfortunately, IL-25 levels in peripheral and endome-
triotic lesions were not analyzed in this study.

IL‑1 receptor antagonist (IL‑1RA) and IL‑37

The IL-1 family is the largest family of interleukins, which 
comprises 11 members, including pro-inflammatory agonists 

(IL-1β, IL-18 and IL-36), and defined or putative antago-
nists (IL-1RA and IL-37) with anti-inflammatory activities. 
An elevated level of IL-1R was detected in serum [40, 98] 
and PF [98] from patients with endometriosis. Opposingly, 
Zhang et al. reported that there was a lower level of IL-1RA 
in PF from endometriosis patients, particularly those with 
dysmenorrhea [99]. This conflicting result may be due to 
the different criteria for patient selection used between the 
studies; for example, all patients in the former study were 
infertile [98]. IL-37 inhibits innate and adaptive immune 
functions by reducing the expression of pro-inflammatory 
cytokines (TNF-α, IL-6 and IL-17) [100, 101], and its sup-
pressive effect on inflammatory factor may be mediated by 
inhibition of nuclear factor-kappa B (NF-κB) [102]. IL-37 
was reported to be highly expressed in eutopic and ectopic 
endometrium of women with ovarian endometriosis, par-
ticularly ectopic endometrium [103]. In addition, IL-37 was 
elevated in peripheral blood [44, 58, 104] and PF [58, 104] 
from patients with endometriosis.

As the disease progresses, the levels of pro-inflammatory 
cytokines in PF and/or ectopic lesions gradually increase, 
while anti-inflammatory cytokines tend to increase in the 
later stage of the disease [39, 48, 50, 95, 98, 104–106]; how-
ever, there is still a lack of larger datasets that have measured 
the concentration of pro-inflammatory and anti-inflamma-
tory cytokines in endometriosis. If large sample studies are 
conducted, the dynamic changes of these pro-inflammatory 
and anti-inflammatory cytokines in disease progression may 
be elucidated. Although pro-inflammatory and anti-inflam-
matory cytokines are reported to increase in the peripheral 
blood of endometriosis patients, researchers still question 
their diagnostic value for endometriosis [32, 33]. Similarly, 
their use for disease diagnosis requires further assessment 
in large sample studies.

Origin

Immune cell

Endometriotic lesions have a higher concentration of T lym-
phocytes than the eutopic endometrium [19, 107]. Foxp3-
expressing CD4+ regulatory T cells (Tregs) are an important 
subset of T lymphocytes with a crucial role in the mainte-
nance of self-tolerance and immune homeostasis, and are 
involved in various human diseases, such as autoimmune 
diseases and cancer [108–110]. As the two key functional 
cytokines, IL-10 and TGF-β are secreted by Tregs in ectopic 
lesions and PF, and are significantly increased in patients 
with endometriosis (Fig.  2) [54, 74, 77, 111–113]. As 
opposed to pro-inflammatory interferon (IFN)-γ+Th17 cells, 
IL-10 production by Th17 cells is critical for limiting auto-
immunity and inflammatory responses. This unique subset 
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of Th17 cells simultaneously secretes IL-10 and IL-17A in 
the PF of women with endometriosis [48]. Macrophages are 
the most prevalent type of immune cells in the PF [114], 
and their number and activation [115], and their produc-
tion of cytokines (such as IL-6, IL-10, IL-12 and TGF-β1) 
[77, 116] are increased in endometriosis. Co-culture of mac-
rophages and endometrial stromal cells (ESCs) increases the 
production of IL-10 and TGF-β [48, 117–119] and further 
stimulates TGF-β secretion by Tregs [54, 113, 120]. As the 
classical allergy mediators, mast cells (MCs) are also pre-
sent in high numbers in endometriotic lesions [121–123]. 
MCs and Th2 cells may be the most important sources of 
high IL-25 in PF [97]. Interestingly, a population of aryl 
hydrocarbon receptor-expressing MCs that express IL-17 
and IL-10 has been recently identified in the endometrium 
[124]. Myeloid-derived suppressor cells (MDSCs) are a het-
erogeneous population of immature myeloid cells that have 
a major role in immunosuppression in cancer, inflammation 
and other diseases [125, 126]. Increased MDSCs have been 
confirmed in peripheral blood, PF and endometriotic lesions 
of endometriosis patients by several groups [127–130]. 

IL-10, GM-CSF and ARG1 are important effectors secreted 
by MDSCs; therefore, further studies are required clarify 
whether MDSC are also associated with the high IL-10 level 
in endometriosis.

ESCs/endometrial epithelial cells (EECs)

Immunohistochemical analysis has demonstrated that IL-
4-positive cells accumulate around blood vessels in the 
stroma of endometriotic tissue [131]. IL-10 and TGF-β 
are highly expressed in ESCs [45, 48, 118, 119, 132] and 
EECs [72] from endometriotic endometrium, and EECs have 
been found to be the primary source of IL-13 expression 
[61]. Subsequently, the same research team confirmed that 
ESCs and EECs isolated from endometrium expressed IL-13 
in primary culture [133], and TSLP is also produced and 
secreted by the isolated ESCs [94, 134, 135]. Our previous 
study demonstrated that endometriotic ESCs secrete high 
levels of IL-33 [118], which was further confirmed by a 
recent report [96]; however, no study has investigated the 
secretion of IL-25, IL-33 and TSLP by ECCs, which requires 

Fig. 2   Schematic presentation of cell population and the origin of anti-inflammatory cytokines in endometriotic milieu. PF peritoneal fluid
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further research. Immunohistochemical staining revealed 
cytoplasmic and nuclear expression of IL-37 in endometrial 
glandular epithelial cells and stromal cells [103].

Endometriotic mesenchymal stem cells (MSCs)

The presence of regenerating healthy endometrial MSCs 
[136, 137], menstrual blood stromal stem cells (MenSCs) 
[138, 139] and endometriotic MSCs [139–142] has recently 
been reported, with the cell types exhibiting similar pheno-
types. These endometrial MSCs are involved in the patho-
genesis of endometriosis [139–142]. Reverse transcrip-
tion-polymerase chain reaction analysis revealed that the 
anti-inflammatory cytokine TGF-β was significantly down-
regulated and IL-10 was significantly increased in endome-
triotic MSCs [143]. Another group recently reported that 
endometriotic MSCs secrete high levels of TGF-β [144]. 
Additionally, MenSCs are another source of IL-10 in endo-
metriosis [138].

Peritoneal mesothelial cells (PMCs)

In women with endometriosis, peritoneal areas adjacent to 
endometriosis lesions express higher TGFB1 mRNA levels 
than distal sites [76]. Researchers also speculate that cells 
present in the peritoneum are a major source of IL-10 [50]. 
PMCs are the largest cell population within the peritoneal 
cavity. TGF-β1 protein is detectable in conditioned media 
from primary cultures of human peritoneal mesothelial cells 
(HPMCs) [76, 145], suggesting that the peritoneum, and in 
particular, the peritoneal mesothelium, is a source of TGF-
β1, which is enhanced around endometriotic lesions [76, 
146]. Shed menstrual tissue, ectopic endometrial cells and 
macrophages are thought to be additional sources of TGF-β1 
present in the PF of women with endometriosis [147].

Platelets

Considering that ectopic endometrium experiences cyclical 
and repeated bleeding [148], a basic sign of tissue injury, 
Guo et al. recently reported that platelets have important 
roles in the development of endometriosis [149–151]. Acti-
vated platelets release TGF-β1 [152], and the activation of 
platelets in endometriosis is significantly higher than in 
controls [153]. Tanshinone IIA (Tan IIA) is a major lipo-
philic component extracted from the root of Salvia miltior-
rhiza Bunge that can inhibit the function of platelets and the 
formation of thrombus [154, 155]. Immunohistochemical 
analysis has demonstrated that Tan IIA treatment signifi-
cantly decreased TGF-β1 staining and platelet aggregation 
in ectopic endometrium [156]. Treatment of platelets with 
endometriotic ESCs increased the concentration of TGF-β1 
in a density-dependent manner [157]. These results suggest 

that the increased activation of platelets is also an important 
source of TGF-β1 in endometriosis.

Function

Immune escape

Endometriotic lesions are detectable at a pathological stage, 
and it is extremely rare to be able to microscopically detect 
the earlier phases of attachment and proliferation of endo-
metrial tissue in the peritoneum. Numerous studies have 
attempted to elucidate why ectopic implants develop resist-
ance to scavenging by the immune system due to (at least 
in part) the altered function of macrophages, natural killer 
(NK) cells and T cells. It has been demonstrated that T cell 
reactivity and NK cytotoxicity are decreased in the PF of 
women with endometriosis, and an increase in the number 
and activation of peritoneal macrophages with impaired 
phagocytic activity has been reported [19].

An increase in CD4+CD25+ Tregs can suppress the pro-
liferation of CD4+CD25− effector T cells [54]. As the two 
key cytokines secreted by Tregs, IL-10 and TGF-β1 are 
likely to be involved in this process [54]. Anti-inflammatory 
cytokines, IL-10 and TGF-β1, produced by endometriotic 
ESCs, macrophages and platelets can weaken the cytotoxic 
activity of NK cells, which is not due to increased NK cell 
apoptosis or decreased NK cell proliferation; it is caused 
by reduced expression of activating receptors, natural killer 
group 2 member D (NKG2D) and NK receptor (NKp46), 
reduced perforin production and increased expression of 
inhibitory receptor killer cell immunoglobulin-like recep-
tor 2DL1 in NK cells [119, 158–160].

Additionally, endometriotic ESCs induce the differentia-
tion of activated macrophages and reduce the phagocytic 
activity of macrophages in co-culture, which can be reversed 
by the addition of an IL-33 inhibitor, suggesting that IL-33 
produced by endometriotic ESCs contributes to the reduced 
phagocytic ability of macrophages in endometriosis [118]. 
It has been reported that a decrease in ST2 suppresses breast 
cancer progression and metastasis in mice, mainly by via 
enhanced cytotoxic activity of NK cells [161]. These results 
suggest that IL-33 may reduce the cytotoxicity of NK cells 
during endometriosis. Thus, the functional changes induced 
by anti-inflammatory cytokines contribute to immunosur-
veillance evasion of ectopic endometrial cells.

Inflammation regulation

Pro-inflammatory and anti-inflammatory factors/responses 
antagonize each other to maintain physiological homeostasis 
and pathological immune imbalance. Mancini et al. reported 
that stimulation with 10 fg/ml IL-10 inhibits NF-κB p65 
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nuclear localization in endometriotic epithelial (12Z) cells 
and stromal (22B) cells lines; however, a marked change in 
IL-1β levels was not observed in vitro [162]. This study did 
not analyze the effects of IL-10 on the growth of ESCs and 
EECs further in vitro or in vivo. A recent study reported that 
IL-37 inhibits the expression of pro-inflammatory cytokines, 
IL-1β, IL-6 and TNF-α, and anti-inflammatory IL-10 in 
human ESCs in vitro [163]. Treatment of endometriosis 
model mice with recombinant human IL-37 reduced the size 
and weight of endometriotic-like lesions and reduced expres-
sion of IL-1β, IL-6, IL-10 and TNF-α in PF [163]; however, 
a limitation of this study was that human, not mouse, IL-37 
was used in the animal experiments, which makes it unclear 
whether this result can accurately reflect the process in vivo. 
Currently, there is limited evidence that elevated anti-inflam-
matory cytokines in the late stage of disease can alleviate 
disease activity by controlling inflammation.

By contrast, Miller et al. reported that in vitro stimula-
tion with IL-33 increased the production of pro-inflam-
matory cytokines, IL-1α and TNF-α, by human umbilical 
venule endothelial cells (HUVECs), and the production of 
chemokine (C-X-C motif) ligand 1 (CXCL1) and IL-6 by 
12Z cells [96]. In a syngeneic mouse model of endometrio-
sis, IL-33 injections caused an increase in pro-inflammatory 
cytokines within the plasma [96]. Therefore, an increase in 
anti-inflammatory cytokines in the later stage of the disease 
potentially has a dual role in the immune regulation of the 
endometriotic microenvironment. On one hand, the anti-
inflammatory cytokines accelerate disease development by 
promoting immunosurveillance evasion of ectopic endome-
trial cells and inducing inflammation; and on the other hand, 
they reduce disease activation by restricting the inflamma-
tion. Further research is required.

Cell proliferation, apoptosis, adhesion, migration 
and invasion

Abnormal cellular characteristics (high proliferative abil-
ity, adhesion, migration and invasion, and low levels of 
apoptosis and autophagy) present in the endometrium of 
women with endometriosis contribute to ectopic survival 
and growth of endometrial tissue outside of the uterine 
cavity [164–171]. Research has revealed that IL-4 induces 
phosphorylation of p38 mitogen-activated protein kinase 
(MAPK), stress-activated protein kinase/c-Jun kinase and 
p42/44 MAPK, and that inhibitors of these kinases sup-
press IL-4-induced proliferation of human endometriotic 
ESCs in vitro [172]. Blocking IL-4 significantly reduces 
the number and volume of total ectopic lesions, downregu-
lates the expression of integrinβ1, matrix metalloprotein-
ase (MMP)-3, MMP-9, E-cadherin and β-catenin in ectopic 
lesions, and inhibits the development of endometriosis in a 
syngeneic mouse model [173]. These findings suggest that 

proliferation, growth adhesion and invasion of endometriotic 
endometrium induced by locally produced IL-4 are involved 
in the development of endometriosis.

Suen et al. [42] demonstrated that depletion of IL-10 
activity in a mouse model of surgically induced endometrio-
sis significantly decreased the size of endometrial lesions, 
which supported the findings of an earlier report [174]. 
Subsequent research revealed that the secretion of IL-10 
and TGF-β1 by Tregs increased MMP-2 expression and 
decreased tissue inhibitor of metalloproteinase 1 (TIMP1) 
expression. IL-10 and TGF-β1 secretion also stimulated the 
proliferation and invasion of ESCs in vitro, and the growth 
of ectopic lesions in vivo [54, 175]. Additionally, IL-10 can 
cooperate with IL-17A to promote growth, adhesion, inva-
sion and implantation of endometriotic ESCs, and reduce 
apoptosis in vitro and in vivo [48]. Compared with block-
ing IL-10 or IL-17A alone, the anti-endometriosis effect is 
improved by simultaneously blocking IL-10 and IL-17A 
[48].

In addition to the decrease of immune cell activity, stud-
ies in mice and women have indicated that increasing lev-
els of TGF-β1 are associated with an increase in ectopic 
endometrial cell survival, attachment, invasion, and pro-
liferation, during endometriosis lesion development [146, 
176]. Bristol-Gould et al. [177] have developed a mouse 
model of ovarian endosalpingiosis and found that the onset 
of this disease is dependent on TGF-β/activin/mothers 
against decapentaplegic homolog 2 (also known as SMAD 
family member 2 or Smad2). Treatment with a TGF-β type 
1 receptor (TGFβR1) inhibitor can diminish disease pro-
gression in mice, especially when used synergistically with 
a histone acetyltransferase inhibitor [178]. In vitro experi-
ments revealed that TGF-β1 can enhance integrin-mediated 
cell–cell adhesion by activating the Smad signaling path-
way [71, 72, 179] and promoting attachment of cells to the 
HMrSV5 (human peritoneal mesothelial cell line) cell mon-
olayer, and increase the Matrigel invasion of ESCs, poten-
tially by upregulating the expression of Versican V1 [180]. 
Most interestingly, treatment of endometriotic EECs and 
normal EECs with TGF-β1 dramatically increases Smad-
dependent and TGFβR1-dependent secretion of plasmino-
gen activator inhibitor-1 (PAI-1) in these cells. Recombinant 
PAI-1 can increase cellular de-adhesion of endometriotic 
EECs and normal EECs [132], suggesting that TGF-β1 
regulates peritoneal wound repair, and the dynamic imbal-
ance between adhesion formation and de-adhesion of endo-
metriotic cells in endometriosis [176] TGFβR1 expression 
is significantly higher in the high-migratory ectopic endo-
metriotic tissues, and wound-closure assay, transwell assay 
and confocal imaging of F-actin cellular distribution have 
further demonstrated that TGF-β1 significantly increases 
the migration ability of endometriotic ESCs by upregulat-
ing the expression of octamer-binding transcription factor 
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4 (OCT4) and migration-related genes (SNAIL, SLUG and 
TWIST) [181]. TGF-β signal blockade using a TGFβRI 
inhibitor, A83-01, fully attenuates the platelet-induced cell 
migratory and invasive propensity of endometriotic ESCs 
in vitro [182]. Moreover, TGF-β1 significantly induces the 
expression of colony stimulating factor 1 receptor (c-fms) 
mRNA and c-fms cell-surface expression, and enhances 
transmesothelial invasion by EM42 cells (an immortalized 
EEC line) and primary EECs in a three-dimensional in vitro 
model of the peritoneum [183]. However, cellular prolifera-
tion and attachment of EECs to PMCs were not influenced 
by TGF-β1 [183].

In a syngeneic mouse model of endometriosis, injection 
with IL-33 caused an increase in the proliferation of endo-
metriotic lesions [96]. TSLP stimulates the production of 
cytokines chemokine (C–C motif) ligand 2 (CCL2) and IL-8 
(also known as CXCL8) by ESCs, and promotes the growth 
of ESCs via c-Jun N-terminal kinase (JNK) and NF-κB 
signaling pathways in vitro [134]. Notably, endometrial tis-
sue conditioned media enhances the adhesive capability of 
human endometriotic tissues in mice, and co-treatment with 
IL-1RA dramatically reduces this effect [184]; however, the 
role of other anti-inflammatory cytokines, IL-13 and IL-25, 
in the regulation ESC and EEC biological functions requires 
further study.

As described above, these anti-inflammatory cytokines 
can promote the ectopic growth, adhesion, and implanta-
tion of ESCs, and even cooperate with pro-inflammatory 
cytokines to form a local cytokine regulation network 
and further accelerate the origin and progression of 
endometriosis.

Epithelial‑mesenchymal transition (EMT), 
mesothelial‑to‑mesenchymal transition (MMT), 
fibroblast‑to‑myofibroblast transdifferentiation 
(FMT), smooth muscle metaplasia (SMM) 
and fibrogenesis

EMT is a process by which epithelial cells lose polarized 
organization of the cytoskeleton and cell-to-cell contacts, 
acquiring the high motility that is characteristic of MSCs. 
These changes are thought to be prerequisites for the origi-
nal establishment of endometriotic lesions [185, 186]. In 
human endometriotic ESCs, TGF-β1 dose-dependently 
increases the gene and protein levels of OCT4, SNAIL and 
N-cadherin, and silencing of endogenous OCT4 significantly 
suppresses these TGF-β1-induced effects. This demonstrates 
that TGF-β1, in co-operation with OCT4, contributes to the 
process of EMT in endometriosis [181]. Matsuzaki et al. 
[187] demonstrated that stimulation with TGF-β1 initiates a 
partial EMT-like process in EECs grown on polyacrylamide 
gel substrates (a soft matrix). Additionally, TGF-β1 has long 
been regarded as a major regulator of fibrosis [176, 185, 188, 

189]; for example, long-term TGF-β1 stimulation induces 
phosphorylation of nuclear receptor subfamily 4 group 
A member 1 in a protein kinase B (also known as AKT)-
dependent manner, which then promotes the expression of 
fibrotic markers in vitro and stimulates fibrogenesis in mice 
with endometriosis [190]. Endometriotic MSCs significantly 
promote fibrogenesis in ovarian endometrioma through the 
Wnt/β-catenin pathway via paracrine production of TGF-β1 
and Wnt1 [144]. Notably, activated platelets, promote EMT 
and FMT in endometriosis through the release of TGF-β1, 
resulting in the increased cell contractility, collagen produc-
tion, and, ultimately, fibrosis [182]. Exposure of endometri-
otic ESCs to activated platelets induces the increased expres-
sion of alpha smooth muscle actin (α-SMA) and markers of 
differentiated smooth muscle cells [182]. SMM has been 
frequently observed in peritoneal, ovarian, extragenital, and 
pleuropulmonary endometriosis [191]. Another common 
process in peritoneal fibrotic tissue is MMT, by which mes-
othelial cells in the peritoneal cavity transform into myofi-
broblasts under pathological conditions. In a mouse model, 
blockade of TGF-β resulted in molecular reprogramming 
of markers associated with the mesenchymal conversion of 
mesothelial cells and a significant decrease in the severity 
of peritoneal adhesions [192].

Although there are no reports regarding the role of other 
anti-inflammatory cytokines (e.g., IL-4 and IL-10) in EMT 
and FMT during endometriosis, a large number of stud-
ies have demonstrated that IL-4 [193], IL-10 [194], IL-13 
[195], and IL-33 [196] promote EMT in cancer cells and 
human kidney cells. Anti-inflammatory cytokine IL-4 and 
pro-inflammatory cytokine IL-17A provide a Th2/Th17-
polarized inflammatory environment, in which TGF-β1 
induces bronchial and alveolar EMT processes [193, 197, 
198]; however, IL-37 decreases the EMT of lung cancer cells 
by inhibiting IL-6 expression [199]. Serum IL-33 concentra-
tion is positively correlated with leiomyoma features, such 
as fibroid weight and size, and the number of fibroids [200]. 
Additionally, IL-13 [201] promotes liver fibrosis, and IL-10 
inhibits fibrosis [202]. The reports discussed indicate that 
the aforementioned anti-inflammatory cytokines, together 
with TGF-β1, may participate in the regulation of EMT, 
MMT, FMT and SMM in endometriosis, and pro-inflam-
matory cytokines may also have a synergistic role in these 
effects, which is worth further attention and research.

Angiogenesis

Angiogenesis is a key process involved in the success-
ful establishment and growth of endometriotic lesions 
[203, 204]. Immunohistochemical analysis has shown that 
eotaxin-positive cells colocalize with IL-4-positive cells 
and accumulate around the blood vessels in the stroma of 
endometriotic tissue. IL-4 can increase secretion of eotaxin 
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from ESCs and may further promote angiogenesis, and the 
subsequent development of endometriosis [131, 205]. In 
contrast, blocking IL-4 leads to the reduced expression of 
vascular endothelial growth factor (VEGF) in the endometri-
otic lesions of mice and may further impair vascularization 
of the ectopic endometrium [173]. Interestingly, VEGF and 
IL-10 concentrations are positively correlated in the PF of 
endometriosis patients, but IL-10 neutralizing antibody did 
not affect the release of VEGF by neutrophils treated with 
PF from patients with endometriosis [206].

Yong et al. reported that TGF-β1 can upregulate VEGF-
A expression in PMCs by increasing expression of inhibi-
tor of DNA binding (ID) 1 [207]. The luciferase activity of 
a VEGF promoter construct was increased in the presence 
of either TGF-β1 or hypoxia, and combined treatment with 
hypoxia and TGF-β1 resulted in a much higher production 
of VEGF by ESCs [70]. Furthermore, TGF-β1 and pro-
inflammatory cytokines, IL-1β or TNF-α, can synergisti-
cally promote IL-8 and VEGF expression in ESCs via the 
p38/extracellular-signal-regulated kinase (ERK) 1/2 signal-
ing pathways, and stimulate the angiogenesis of HUVECs 
in vitro [120]. As mentioned above, TGF-β1 has been asso-
ciated with changes in ectopic endometrial and peritoneal 
cell metabolism, and the initiation of neoangiogenesis and 
endometriosis lesion development [146].

In vitro studies have shown that stimulation with IL-33 
significantly increases the levels of angiogenic factors, 
including VEGF and platelet-derived growth factor-AA, 
by EECs and stimulates tubulogenesis in HUVECs [96]. 
Endometriotic lesions from IL-33-treated mice were highly 
vascularized and exhibited increased proliferation of endo-
metriotic lesions, which echoed the results discussed above 
[96]. IL-8 is considered to be an important angiogenic fac-
tor [208]. As previously described, TSLP upregulates the 
production and secretion of IL-8 from ESCs in vitro [134]. 
It has also been established that TSLP secreted by cervical 
cancer cells stimulates proliferation, activation and angio-
genesis of HUVECs, but does not alter HUVEC apoptosis 
in vitro [209]. Therefore, it is likely that TSLP has a role 
in angiogenesis associated with endometriosis, with further 
studies required to confirm this function.

Others

It has been reported that elevated serum IL-33 is correlated 
with the intensity of painful pre-operative symptoms, and 
with the extent and severity of deeply infiltrating endometri-
osis [93]. Alterations in Treg and NK cell-related cytokines 
are associated with deep infiltrating rectosigmoid endome-
triosis, and TGF-β1, IL-7 and IL-15 expression is linked to 
dyspareunia, dysmenorrhea and cyclic dyschezia in patients 
with endometriosis [45]. However, the regulatory roles and 

molecular mechanisms of IL-33 and TGF-β1 in endometri-
osis-related pain are almost entirely unknown.

Prostaglandin E2 (PGE2) stimulates P450 aromatase 
(P450arom) expression in ESCs and increases the produc-
tion of estrogens [210]. IL-4 was shown to have no effect 
on the expression of P450arom mRNA, whereas IL-4 and 
PGE2 in combination significantly augmented the production 
of estrone from dehydroepiandrosterone (DHEA) in vitro. 
These findings suggest that the combination of IL-4 and 
PGE2 may enhance estrogen production in endometriotic 
tissues, suggesting a complex mechanism exists whereby 
Th2 immune responses augment inflammation-dependent 
estrogen production, which promotes disease progression 
[211].

Regulation

Chemokines

Chemokines produced in the endometriotic microenvi-
ronment contribute to a feed-forward cascade of events, 
which promote the recruitment of leukocytes to the peri-
toneal cavity and regulate the proliferation and invasion of 
ESCs in patients with endometriosis. These chemokines 
include regulated on activation, normal T cell expressed and 
secreted (RANTES; also known as CCL5), CCL2, CXCL8 
and thymus-expressed chemokine (also known as CCL25) 
[212–215]. As depicted in Table 2, under the regulation of 
17β-estradiol (E2) and dioxin 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), RANTES secreted by ESCs can increase 
macrophage recruitment, and induce tolerant phenotypes 
by upregulating IL-10 and downregulating IL-23. In turn, 
these macrophages inhibit apoptosis and enhance the growth 
of ESCs [117]. Subsequently, our studies show that ESC-
derived CCL25 enhances the production and secretion of 
IL-10 and TGF-β in Tregs by activating the AKT/signal 
transducer and activator of transcription 3 (STAT3) sign-
aling pathway [54]. Treatment with CCL25 also enhances 
IL-10 secretion by CD33+CD14+CD11b+HLA-DR− mono-
cytic MDSCs (M-MDSCs) in vitro [129]. Taken together, 
these findings indicate that chemokines are involved in the 
regulation of anti-inflammatory cytokines in the endometri-
otic environment.

Pro‑inflammatory cytokines

It has been reported that the pro-inflammatory cytokine 
IL-1β significantly increases the secretion of IL-4 [216]. In 
addition, IL-1β contributes to the Th2 immune response by 
promoting the secretion of TSLP, and this effect is depend-
ent on p42/44 MAPK, p38 MAPK and stress-activated 
protein kinase (SAPK)/JNK signaling pathways [94]. IL-4 
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Table 2   The regulatory factors of anti-inflammatory cytokines in endometriosis

Classification Regulatory factor Function References

Chemokine RANTES Recruits more macrophages and induces them into tolerant pheno-
type by upregulating IL-10 and downregulating IL-23

[117]

CCL25 Enhances the production and secretion of IL-10 and TGF-β1 in 
Tregs and M-MDSCs

[54, 129, 212]

Proinflammatory cytokine IL-1β Increases the secretion of IL-4 [216]
Contributes to the Th2 immune response by improving the secre-

tion of TSLP
[94]

TNF-α Increases the secretion of IL-13 [133]
IFN-γ Inhibits the IL-1β-induced TSLP secretion from ESCs [94]
IL-33 Upregulates the levels of IL-10 and TGF-β1 in macrophages in 

co-culture unit
[118]

IL-27 Induces IL-10 production of Th17 cells [48]
IL-8 and IL-23 Induces the differentiation of COX-2highCD16−NK cells with high 

levels of IL-10 and TGF-β1
[217]

Hormone/hormonal drugs 17β estradiol Regulates GATA3 and promotes Th2 cytokines expression of 
EECs

[221, 222]

Stimulates the secretion of TSLP by ESCs [134, 135, 223]
Induces IL-10 production of Th17 cells by promoting IL-27 from 

macrophages and ESCs
[48]

Results in a rapid induction of IL-13 and IL-15 expression in 
ESCs and EECs but not a sustained induction

[133]

Urocortin Urocortin 2 increases TNF-α and IL-4 while urocortin 3 induces 
an increase of IL-4 secretion

[228]

GnRH analogs Inhibits IL-1, IL-2, IL-8, and IL-13 levels in the serum with 
recombinant IL-2

[233]

Danazol Suppresses IL-2 and interferon-γ were but upregulates IL-4 and 
IL-10 and increases Tregs population among splenocytes

[235, 236]

Non-steroidal drugs Macrolide Increases IL-10 expression in the rat endometriosis model [237]
PLGA/anti-CTLA-4 Downregulates IL-10 and TGF-β secreted by Tregs [175]
Sodium TAN IIA sulfonate Reduces the expression of CD41, TGF-β1, p-Smad3, α-SMA and 

collagen I in ectopic lesions
[156]

G-Rg3 Decreases mRNA levels of Ki-67, fibronectin, TGF-β1, MMP2 
and MMP9 significantly in human ESCs

[245]

PPD Activates the cytotoxicity and decreases IL-10 production of NK 
cells in endometriotic milieu

[246]

EGCG​ Decreases the TGF-β1-dependent increase in the mRNA expres-
sion of fibrotic markers

[188]

Metabolite/metabolic enzyme SNAP Decreases plasma IL-2, IFN-γ, and IL-4 and increases IL-10, and 
enables the growth of implant in a murine model of endometrio-
sis

[256]

IDO1 Triggers macrophages to display the tolerant cytokine profile (the 
markedly raised level of IL-10 and TGF-β1 and depressed level 
of IL-12p70) by upregulating IL-33 in ectopic ESCs

[118]

1-MT Decreases differentiation of Treg cells in an ESC-Tregs co-culture 
unit, especially IL-10+ Treg cells

[113]

Glucose Triggers production of TGF-β1 which plays a pivotal role in the 
progression of peritoneal fibrosis by inducing numerous pro-
fibrotic events

[259]

Induces TGF-β1 production in HPMCs in vitro [145]
LXA4 Downregulates the pro-inflammatory cytokines IL-1β and IL-6, as 

well as modulating TGF-β isoform expression within endometri-
otic lesions and in peritoneal fluid cells

[264]

Platelet Increases concentration of TXB2, thrombin, and TGF-β1 [157, 182]
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enhances the IL-1β-induced TSLP secretion from ESCs, 
while IFN-γ inhibits it [94]. Roberts et al. [133] confirmed 
that primary ESCs and EECs isolated and cultured from 
endometrium express IL-13. Pro-inflammatory cytokine 
TNF-α and anti-inflammatory cytokine TGF-β1 both signifi-
cantly increase the secretion of IL-13 from EECs and ESCs 
in vitro. Our previous study demonstrated that IL-33 derived 
from ESCs can upregulate the levels of IL-10 and TGF-β1 
in macrophages in a co-culture [118], and IL-27 secreted by 
ESCs and macrophages induces IL-10 production by Th17 
cells in the endometriotic environment [48]. IL-8 and IL-23 
produced from ectopic lesions induce the differentiation of 
cyclooxygenase (COX)-2highCD16−NK cells, which express 
high levels of IL-10 and TGF-β1 [217]. As stated previously, 
there are interactions between pro-inflammatory (e.g., IL-1β, 
TNF-α, and IFN-γ) and anti-inflammatory cytokines (e.g., 
IL-4, IL-10, IL-13, IL-33, TGF-β, and TSLP) in the micro-
environment of ectopic lesions. The co-existence of high 
levels of pro-inflammatory and anti-inflammatory cytokines 
is involved in immune escape by endometriotic lesions and 
inflammation regulation.

Hormones and hormonal drugs

It is generally established that endometriosis is an estro-
gen-dependent disease [218]. Endometriotic lesions are 
associated with hormonal imbalance, including an increase 
in estrogen synthesis, metabolism and progesterone resist-
ance. As a Th2 cell-specific transcription factor, the bind-
ing sites for GATA binding protein-3 (GATA-3) are pre-
sent in the promoter regions of all Th2 cytokines [219]. 
This can promote differentiation of Th2 cells and induce 
the expression of Th2 cytokines, such as IL-4 and IL-10 
[220]. GATA-3 is time- and dose-dependently regulated 
by E2, and promotes Th2 cytokine expression (e.g., IL-4 
and IL-10) by EECs [221], which is consistent with pre-
vious evidence of the stimulatory regulation role of E2 in 
rat IL-10 expression [222]. In addition, E2 stimulates the 
secretion of TSLP by ESCs in a dose-dependent manner 
[134, 135, 223]. Under external (TCDD) and local (high 

levels of estrogen, IL-6 and TGF-β) environmental regu-
lation, IL-27 secreted by macrophages and ESCs induces 
IL-10 production by Th17 cells in endometriosis in vitro 
and in vivo [48]. Treatment of EECs and ESCs with E2 
and medroxyprogesterone acetate (MPA) results in a rapid 
induction of IL-13 and IL-15 expression [133]. Interest-
ingly, prolonged MPA exposure, especially > 10 days, 
does not lead to a sustained induction of IL-13 and IL-15 
[133]. These studies indicate that estrogen and MPA may 
indirectly contribute to the regulation of immune and 
endometriotic lesion implantation and growth by modu-
lating these anti-inflammatory cytokines, and the potential 
mechanisms involved require further research.

The presence of neuroendocrine cells in the eutopic endo-
metrium of women with endometriosis has been reported 
[224]. There is evidence that corticotrophin-releasing hor-
mone [225] and urocortin [226] are present in endometriotic 
tissue, and that the levels of these neuropeptides are dys-
regulated in endometriosis [227]. Stimulation of cultured 
ESCs with urocortin 2 significantly increases TNF-α and 
IL-4, while urocortin 3 induces an increase in IL-4 secretion 
in vitro [228]. These results indicate that these neuropeptides 
may also be involved in the pathogenesis of endometriosis 
via the regulation of pro-inflammatory and anti-inflamma-
tory cytokines.

Therapy with gonadotropin-releasing hormone (GnRH) 
analogs is effective for pain control in women with sympto-
matic endometriosis and has been considered the gold stand-
ard treatment for two decades. Currently, GnRH analogs 
are second-line therapy, when primary treatments fail, are 
contraindicated or are not tolerated [229–231]. Post-surgical 
treatment with GnRH analogs may be useful in reducing 
pain and in delaying recurrence of symptoms in patients with 
incomplete treatment [232]. Velasco et al. [233] found that 
patients receiving GnRH analogs alone had high IL-1, IL-2, 
IL-8 and IL-13 levels in their serum; however, administra-
tion of recombinant IL-2 plus GnRH analogs had a tendency 
to reduce cytokine production. Whether the anti-endometri-
osis effect of GnRH analogs depends on the regulation of 
these cytokines is unknown.

Table 2   (continued)

Classification Regulatory factor Function References

Others MRC2 Negatively regulates Treg differentiation in the ectopic lesion, 
especially that for TGF-β+ Treg

[113]

Hypoxia Leads to high level of TGF-β1 by ESCs [179]
TNF-binding protein-1 Negatively modulates the expression of TGF-β in endometriotic 

lesions from baboons
[265]

KLF11 Binds to specific elements located in the promoter regions of key 
fibrosis-related genes from the Collagen, MMP and TGF-β1 
families in ESCs, and results in transcriptional repression of 
these genes

[266]
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Danazol (the synthetic androgen 2,3-isoxazol), a deriva-
tive of 17α-ethynyl testosterone, has mild androgenic and 
strong anti-estrogenic activity. It can inhibit gonadotropin 
release, determine the competitive inhibition of steroido-
genic enzymes, suppress cell proliferation, modulate immu-
nologic function and reduce endometriosis-associated pain 
[231, 234]. In a murine model, danazol treatment signifi-
cantly prolonged the survival of fully mismatched cardiac 
allografts. Furthermore, in danazol-treated mice, IL-2 and 
IFN-γ were suppressed, whereas IL-4 and IL-10 were upreg-
ulated in splenocytes, and the splenocyte Treg population 
was increased [235, 236]. However, whether danazol regu-
lates the level of pro-inflammatory and anti-inflammatory 
cytokines in the endometriotic environment requires further 
investigation.

Non‑steroidal drugs

As the pathogenesis of endometriosis involves immune 
responses, the immunomodulatory effect of macrolides 
has been a research focus. Clarithromycin and telithromy-
cin increase IL-10 expression in rat endometriosis lesions 
induced by autotransplantation of endometrium, and also 
inhibit the growth of endometriotic lesions [237]; however, 
the mechanism needs further study.

Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) 
is essential for the suppressive function of Tregs. Poly lactic-
co-glycolic acid (PLGA) encapsulation of CTLA-4 antibody 
(PLGA/anti-CTLA-4) as a protein delivery vehicle exhibited 
superior potential as an endometriosis treatment in a mouse 
model compared to CTLA-4 antibody used alone. Most 
strikingly, in an in vitro experiment, PLGA/anti-CTLA-4 
inhibited the proliferation and invasion of ectopic ESCs in 
a co-culture system, and downregulated IL-10 and TGF-β1 
secretion by Tregs [175]. However, there is no clear evidence 
that CTLA-4 antibody regulates cytokine levels and has anti-
endometriosis activity in vivo.

Tanshinone (TAN) is a pharmacologically active diter-
penoid extracted from the roots of S. miltiorrhiza Bunge (a 
plant used in traditional Chinese medicine as a remedy for 
‘blood stasis’, which is a term used in traditional Chinese 
medicine to describe hypercoagulability). TAN can inhibit 
platelet aggregation [238], and suppress TGF-β1/Smad3 
and NF-κB signaling pathways, thus reducing fibrogenesis 
[239, 240]. Recent research has reported that sodium TAN 
IIA sulfonate injection significantly reduces the levels of 
CD41, TGF-β1, p-Smad3, α-SMA and collagen I in ectopic 
lesions, inhibits EMT, FMT, SMM and fibrogenesis, and 
reduces lesion weight in mouse endometriosis models [156]. 
However, large-scale clinical studies are required to assess 
the clinical value of TAN as an anti-endometriosis therapy.

As a traditional medicinal herb, ginseng is widely used 
in Asian countries and North America. Ginsenosides, such 

as ginsenoside-Rg3 (G-Rg3), G-Rf and G-Rh2, are the 
main components extracted from ginseng and have various 
pharmaceutical activities, including anti-oxidant, immu-
nomodulatory, anti-inflammatory and anti-tumor effects 
[241, 242]. As two metabolites of ginsenoside, proto-
panaxadiol (PPD), and protopanaxatriol also exhibit similar 
activities [242–244]. Recent studies have shown that G-Rg3, 
G-Rf and PPD have powerful anti-endometriosis activi-
ties [245–248]. G-Rg3 reduces the proliferation, invasion 
and fibrosis of endometriosis. In vitro, the mRNA levels 
of Ki-67, fibronectin, TGF-β1, MMP-2 and MMP-9 were 
significantly decreased by G-Rg3 treatment in human ESCs 
[245]. In vivo, G-Rg3A reduced the size and fibrosis of 
mouse endometrial lesions [227], and inhibited angiogenesis 
in rat endometrial lesions [247]. G-Rf decreases the vol-
ume of the endometriotic implants, and writhing responses, 
endometriosis-associated dysmenorrhea and inflammation 
in a surgically induced rat endometriosis model [248]. PPD 
has anti-estrogen receptor α (ERα) effects, and induces the 
autophagy of ESCs, activates cytotoxicity and decreases 
IL-10 production by NK cells in a human ESC-NK co-cul-
ture model [246]. However, the clinical evidence of the anti-
endometriosis effect of ginsenosides is still limited.

Epigallocatechin-3-gallate (EGCG) is one of the most 
abundant polyphenols present in green tea. It has been 
reported that EGCG reduces the size of endometriotic 
implants by inhibition of cell proliferation, angiogenesis, 
and induction of apoptosis in mouse endometriotic implants 
[249–252]. Furthermore, EGCG treatment significantly 
decreased the TGF-β1-induced in the mRNA expression 
of fibrotic markers, and the TGF-β1-stimulated activation 
of MAPK and Smad signaling pathways in endometriotic 
ESCs, suggesting that anti-fibrosis activity of EGCG may be 
dependent on the suppression of TGF-β1 in endometriosis 
[188]. However, there is no epidemiological evidence of a 
link between green tea consumption and the occurrence and 
treatment of endometriosis.

Metabolite and metabolic enzyme

Oxidative stress has been identified in the peritoneal cavity 
of women with endometriosis [253]. Nitric oxide (NO) is 
associated with chronic pelvic pain experienced by patients 
with endometriosis [254]. NO also has an important role 
in the regulation of local immune responses [255]. Intra-
peritoneal injections of S-nitroso-N-acetyl-penicillamine 
(SNAP), an NO donor, decreased plasma IL-2, IFN-γ and 
IL-4, increased IL-10 and enabled the growth of implants in 
a murine model of endometriosis [256].

Indoleamine 2,3-dioxygenase-1 (IDO1) is highly 
expressed in ectopic endometrium, and it can enhance 
the proliferation and invasion of ESCs in via an indirect 
immune regulation-independent mechanism [257] and 
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directly [113, 118, 258]. Additionally, IL-33 upregulated 
by IDO1 in ectopic ESCs can trigger macrophages to 
have a tolerant cytokine profile (with markedly increased 
IL-10 and TGF-β1 levels, and a reduced level of IL-
12p70) [118]. In turn, these macrophages promote the 
proliferation and invasion of ESCs [258]. Interestingly, 
ESC-derived TGF-β1 also upregulates IDO levels in NK 
cells in co-culture [160]. A specific inhibitor of IDO1, 
1-methyl-tryptophan (1-MT), decreases differentiation of 
Treg cells in an ESC-Treg co-culture, particularly IL-10+ 
Treg cells [113]. Additionally, the total number and weight 
of mouse endometriotic lesions was notably decreased in 
a group of mice that received 1-MT [113].

Glucose is used as an osmotic agent in peritoneal 
dialysis solution, but glucose-based solutions are associ-
ated with increases in cytokines. For example, glucose-
mediated production of TGF-β1 has a pivotal role in the 
progression of peritoneal fibrosis by inducing numerous 
pro-fibrotic events, such as EMT, fibroblast proliferation 
and extracellular matrix protein deposition [259]. Further-
more, high glucose can also induce TGF-β1 production 
in HPMCs in vitro, and silencing of FBJ murine osteo-
sarcoma viral oncogene homolog (FOS) expression can 
significantly weaken this effect [145]. These studies dis-
cussed above suggest that high glucose may affect the 
immune status of the ectopic lesion microenvironment. It 
has been found that the prevalence of diabetes in women 
with endometriosis is similar to that of the general popula-
tion [260]. However, Wang et al. reported that long-term 
hyperestrogenemia and type II diabetes increased the 
risk of malignant transformation of endometriosis in rats 
[261]; however, whether this is associated with changes 
in immune regulation caused by high glucose is unknown.

Lipoxins are endogenous eicosanoids predominantly 
produced via a transcellular biosynthetic pathway that have 
both anti-inflammatory and pro-resolving properties [262]. 
Lipoxins are estrogenic in vitro and in vivo as they can bind 
to ERα in EECs and counteract E2-mediated responses 
[263]. Lipoxin 4 (LXA4) treatment significantly reduces 
endometriotic lesion size, downregulates pro-inflammatory 
cytokines, IL-1β and IL-6, and modulates TGF-β isoform 
expression within endometriotic lesions and in PF cells 
[264]. However, it is unclear whether the regulation of these 
cytokines by LXA4 is involved in the inhibition of endome-
triotic lesion growth.

Secretion of thrombin and thromboxane A2 (TXA2) 
by ESCs can induce platelet activation and aggregation. 
Meanwhile, treatment of platelets further increased the 
concentration of TXB2, thrombin and TGF-β1 [157, 182]. 
These findings establish that there is a crosstalk between 
endometriotic lesions and platelets via thrombin and TXA-
dependent mechanisms, which potentially contributes to the 
upregulation of TGF-β1 in endometriosis.

Others

Mannose receptor C, type 2 (MRC2) expression was nota-
bly decreased in ectopic ESCs, which negatively regulates 
Treg differentiation in ectopic lesions, particularly that of 
TGF-β1+ Tregs [113]. These results indicate that an estro-
gen-IDO1-MRC2 axis is involved in the differentiation and 
TGF-β1 production of Tregs, and is associated with the 
development of endometriosis by promoting immune escape 
of ectopic lesions. Immunohistochemistry analysis of human 
tissues has shown that TGF-β1 exhibits the same expres-
sion trend as hypoxia-inducible factor (HIF)-1α in ESCs and 
EECs, with the highest staining observed in ectopic lesions. 
Additionally, hypoxia increases TGF-β1 expression by ESCs 
in endometriosis [179]. Recombinant human TNF-binding 
protein-1 negatively modulates the expression of TGF-β in 
endometriotic lesions from baboons [265]. Furthermore, the 
Sp/Kruppel-like factor (KLF) family transcription factor, 
KLF11, can bind to specific elements located in the pro-
moter regions of key fibrosis-related genes of the collagen, 
MMP and TGF-β1 families in ESCs, resulting in transcrip-
tional repression of these genes [266]. Further research is 
required to analyze the underlying mechanism.

Conclusions and future perspectives

Chronic inflammation has an important role in the onset 
and development of endometriosis, particularly at the early 
stages. Therefore, it is often stated that endometriosis is 
an inflammatory disease from the immunological point of 
view; however, studies have also shown that anti-inflamma-
tory cytokines produce by various cell types (e.g., immune 
cells, ESCs, EECs, MSCs, peritoneal mesothelial cells, and 
platelets) accumulate in the microenvironment of ectopic 
lesions. A lack of knowledge regarding the cytokine regula-
tory changes from the perspective of disease progression 
and role of anti-inflammatory factors in the local envi-
ronment of endometriosis has led to less awareness and 
acceptance of the importance of anti-inflammatory factors 
in the pathogenesis of endometriosis. With the continuous 
research advances and in-depth studies, it can be concluded 
that anti-inflammatory cytokines also have a critical role in 
accelerating the growth, adhesion, invasion, EMT, MMT, 
FMT, SMM, fibrogenesis, angiogenesis, and impairment of 
immune surveillance in endometriosis; thus, endometrio-
sis is not simply an inflammatory disease, and it should be 
redefined as a disease with a combined inflammatory and 
anti-inflammatory status.

However, there is a lack of large-scale studies using 
cytokine arrays to systematically analyze the dynamic 
changes in pro-inflammatory and anti-inflammatory 
cytokines during endometriosis disease progression. There 
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is a complex and interactive regulatory imbalance between 
pro-inflammatory cytokines/anti-inflammatory cytokines 
that is regulated by sex hormones, particularly estrogen, 
local metabolism, and the pro-inflammatory cytokines and 
anti-inflammatory cytokines themselves. This leads to the 
co-existence of high concentrations of pro-inflammatory 
and anti-inflammatory cytokines in endometriosis. Similar 
to tumors, anti-inflammatory factors may contribute to the 
new adaptive growth pattern of the ectopic endometrium 
by creating a tolerant endometriotic environment and have 
an important role in immune escape by ectopic lesions. 
Whether this process depends on inflammation regulation 
of the microenvironment of ectopic lesions by anti-inflam-
matory cytokines remains unclear. In addition, how the 
co-existence of pro-inflammatory and anti-inflammatory 
cytokines is generated and the regulatory mechanisms 
involved in endometriosis is not fully understood, which 
warrants further investigated.

Currently, the value of pro-inflammatory factors in the 
diagnosis of endometriosis is controversial [32, 33]. For 
diagnostic or evaluation purposes, reliable pro-inflammatory 
and anti-inflammatory cytokine arrays with high sensitivity 
and specificity must be identified. More realistic diagnostic 
tools will consist of a panel of biomarkers, including pro-
inflammatory and anti-inflammatory cytokines, and other 
serum markers (e.g., CA-125), but the establishment of 
cytokine-based approaches for the management of endome-
triosis still represents a major challenge. These techniques, 
together with other non-invasive tools, such as ultrasound 
and magnetic resonance imaging (MRI), may markedly 
improve the diagnosis of endometriosis and the life quality 
of patients.

A single anti-inflammatory treatment (e.g., anti-TNF-α or 
anti-IFN-γ) is effective in mouse [29], rat [26, 27], baboon 
[23, 267] or human [24] models; however, they are less 
effective or ineffective [30, 31] in clinical trials, particu-
larly in patients with severe and deep infiltrating endome-
triosis. As discussed earlier, many anti-endometriosis drugs 
or potential therapies, including hormonal drugs and immu-
noregulators, simultaneously affect the level and profile of 
cytokines in endometriosis. Therefore, compared with sup-
pressing pro-inflammatory cytokines alone, targeting both 
pro-inflammatory and anti-inflammatory cytokines and/or 
enhancing immune surveillance by innate immune cells 
(macrophages and NK cells) may be more effective for the 
treatment of endometriosis. For therapeutic purposes, novel 
measures combining targeting of pro-inflammatory and anti-
inflammatory factors present in the endometriotic lesion 
microenvironment, without inducing severe side effects, 
are required.

Furthermore, individualized therapies may be necessary 
for immune-associated interventions to treat endometriosis, 
and systematic immunization assessment is required before 

treatment. Therefore, the co-existence of pro-inflammatory 
and anti-inflammatory cytokines in endometriosis offers 
many possibilities for the establishment of novel diagnostics, 
models and therapeutic approaches, which requires further 
research.
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