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Abstract: The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous
disease. Considering that endometriosis etiology and pathogenesis are still far from being fully
elucidated, the current review aims to offer a comprehensive summary of the available evidence.
We performed a narrative review synthesizing the findings of the English literature retrieved
from computerized databases from inception to June 2019, using the Medical Subject Headings
(MeSH) unique ID term “Endometriosis” (ID:D004715) with “Etiology” (ID:Q000209), “Immunology”
(ID:Q000276), “Genetics” (ID:D005823) and “Epigenesis, Genetic” (ID:D044127). Endometriosis may
origin from Müllerian or non-Müllerian stem cells including those from the endometrial basal layer,
Müllerian remnants, bone marrow, or the peritoneum. The innate ability of endometrial stem cells
to regenerate cyclically seems to play a key role, as well as the dysregulated hormonal pathways.
The presence of such cells in the peritoneal cavity and what leads to the development of endometriosis
is a complex process with a large number of interconnected factors, potentially both inherited and
acquired. Genetic predisposition is complex and related to the combined action of several genes
with limited influence. The epigenetic mechanisms control many of the processes involved in the
immunologic, immunohistochemical, histological, and biological aberrations that characterize the
eutopic and ectopic endometrium in affected patients. However, what triggers such alterations is
not clear and may be both genetically and epigenetically inherited, or it may be acquired by the
particular combination of several elements such as the persistent peritoneal menstrual reflux as well as
exogenous factors. The heterogeneity of endometriosis and the different contexts in which it develops
suggest that a single etiopathogenetic model is not sufficient to explain its complex pathobiology.
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1. Introduction

The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous
disease [1]. Its origin may be from Müllerian or non-Müllerian stem cells. These could include stem
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cells of the endometrial basal layer, Müllerian remnants, bone marrow, or the peritoneum. Furthermore,
the innate ability of endometrial stem cells to regenerate cyclically under the influence of estrogen
followed by estrogen/progesterone stimulation and then hormonal withdrawal seems to play a key
role. The presence of such cells in the peritoneal cavity and what leads to the development of
endometriosis is a complex process with a large number of interconnected factors potentially both
inherited and acquired [2]. Genetic studies have confirmed a complex genetic nature [3]. At the same
time, the epigenetic mechanisms underlying endometriosis support the processes that promote the
acquisition and maintenance of immunologic, immunohistochemical, histological, and biological
aberrations that characterize both the eutopic and ectopic endometrium in patients affected by
endometriosis. This may be related to the particular combination of factors linked menstrual reflux
into the peritoneal cavity as well as exogenous factors [4]. Once started, the process is variable and
can lead to the development of endometriosis or can reach a limit to its growth and then stabilize or
regress. As a result, the heterogeneity of endometriosis and the different phenotypes suggest that a
single etiopathogenetic explaining model is not sufficient.

What is Endometriosis?

Endometriosis is a common, benign, inflammatory, generally gynecologic disease that includes the
presence and growth of dysfunctional endometrial-like glands and stroma often with reactive fibrosis
and muscular metaplasia outside the uterus [5]. It is associated with pelvic pain and subfertility in
reproductive age women and can severely compromise the quality of life of affected women [6–11] and
require extensive surgery when more conservative treatment options fail [12,13]. The prevalence rate
of symptomatic endometriosis is estimated to be 10% with an incidence of about 2-7/1000 women per
year and a further 11% of undiagnosed cases, although there are only a few studies with well-estimated
prevalence and incidence of endometriosis in the general population [14–16] and some suggesting that
many, if not all, women have endometriosis as a transient phenomenon [17,18].

Since the introduction of the term “endometriosis” and its pathogenesis theories by Sampson [19–21],
extensive basic and clinical research concerning the etiopathogenesis of endometriosis has been carried
out. However, the exact origin and mechanism of endometriosis development remain theoretical.
The growing body of evidence confirms the multifactorial nature of endometriosis that is the result of the
combined contribution of anatomical, hormonal, immunological, reactive, estrogenic, genetic, epigenetic,
and environmental factors in affected women [7]. These multiple interconnected factors may explain
the complex and heterogeneous presentations of the disease with different locations, appearances,
developments, and hormone responsiveness. The heterogeneity and differences among the three main
classes of endometriosis presentation (peritoneal, ovarian, and deep infiltrating endometriosis) are such
as to suggest different pathogenetic pathways [22,23]. Moreover, a generally accepted hypothesis is that
endometriosis is a phenomenon that may occur intermittently in all women during menstrual cycles, but
that develops in a disabling disease only in a subset of women [17,18,24,25]. Understanding the multiple
pathogenetic pathways underlining the development of endometriosis is of paramount importance, as
they may have implications in the prevention, diagnosis, treatment, and prognosis of the disease [6].

2. Theories on the Origin of Endometriosis

The first question about the pathogenesis of endometriosis was about the origin of the
endometrial-like glands and stroma that constitute the disease. Several hypotheses have been proposed
since 1870 [26], some of only historical interest and some that are now considered the most plausible;
nevertheless, none is able to completely explain the pathogenesis of endometriosis and all the different
presentations of the disease [27]. Overall, all the proposed hypotheses for the cell origin can be
categorized into two main theories: the in-situ theory and the transplantation theory.
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2.1. The in Situ Theory

All the hypotheses belonging to this category are based on the concept that stroma and glands
of endometrial-like tissue of endometriosis originate in-situ from the local tissues by metaplasia or
by embryological origin. This hypothesis was proposed by Waldeyer in 1870 [26], who suggested
that endometriosis develops from the germinal epithelium of the ovary by “metaplasia”. Later,
Von Recklinghausen in 1895 and Russell in 1899 introduced the concept of embryological origin from
mesonephric/Wolffian remnants and Müllerian remnants, respectively [27].

The terms metaplasia and differentiation, whether these refer to the endometrium, to endometriotic
cells, or pluripotent stem cells to endometriotic cells [28], are both used in this manuscript based on the
original source document. We do not attempt to distinguish the differences between those two terms
with overlapping meanings.

The Müllerian remnants hypothesis explains endometrial-like tissue as having developed from
differentiation and proliferation of embryonic cell rests that are constituted by misplaced cells of
primitive endometrial tissue along the migratory pathway of Müllerian ducts [29,30]. The cells spread
across the posterior pelvic floor due to aberrant migration and differentiation during organogenesis of
the female genital tract. Based on this hypothesis, “Müllerianosis” and “Secondary Müllerian system”
theories were proposed as theoretical explanations of cell origin and dissemination of Müllerian-type
epithelium outside the expected area of Müllerian duct development, including endometriosis,
adenomyosis, endosalpingiosis, and endocervicosis [29,30]. However, embryological studies support
the presence of Müllerian rests near the normal deep cul-de-sac area and not in other sites such as the
ovary, sigmoid colon, appendix, or more distal sites such as the diaphragm and pleura [31].

The “Müllerianosis” hypothesis might explain that endometriosis is often found in the cul-de-sac,
uterosacral ligaments, and medial broad ligaments; that peritoneal pockets with and without
endometriosis have been associated with congenital tract malformations; and that endometriosis
seems to have higher prevalence even in women with non-obstructive Müllerian abnormalities [32].
Moreover, this hypothesis is supported by the fact that is able to explain the presence of endometriosis
in women with Mayer–Rokitansky–Küster–Hauser syndrome, in adolescents before or shortly after
menarche , and in human female fetuses; where organoid structures outside uterine cavity resembling
primitive endometrium were reported [31,33–35]. As previously noted, Signorile et al. [31] found CD10
positive remnants in the deep cul-de-sac only. Finally, Müllerian remnants or coelomic metaplasia in
prostate and utricle may explain rare cases of endometriosis reported in males, after long-term high
doses of estrogens for prostate carcinoma [36,37]. Immunohistochemical studies in men support both
Müllerianosis and metaplasia theories [37].

Coelomic metaplasia or the stem cell differentiation hypothesis is based on the fact that, in
the embryonic phase, the coelomic epithelium gives rise to both mesothelium of serosae and the
epithelium lining of the cavity of Müllerian ducts, which forms the endometrium in the uterine body.
This hypothesis explains endometriosis as developing from the metaplastic transformation of germinal
ovarian epithelium and/or peritoneum serosa [38,39]. These metaplastic changes are supposed to
occur secondary to hormonal influences [40,41], inflammatory processes [42,43], or the action of one or
several endogenous biochemical or immunological factors derived from eutopic endometrium, based
on the “induction” theory [44,45]. The induction theory is based on animal model studies suggesting
that specific cell-free endometrial products were capable of inducing the metaplasia of undifferentiated
mesenchyme into endometrial epithelium and glands, although no endometrial stroma was found.
On that basis, it was supposed that these substances, released by uterine endometrium, may diffuse
into the lymphatic and bloodstream and induce the formation of endometriosis in distant parts of
the body [44,45]. The coelomic metaplasia hypothesis and the Müllerian remnants hypothesis may
explain endometriosis in the absence of menstruation; and, additionally, it may explain the presence of
endometriosis outside the pelvis such as in the chest, diaphragm, pleura, and lungs [36,46], although
direct infiltration through the diaphragm or dissemination through diaphragmatic fenestrations or
perforations are retrograde possibilities.
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The main strength of in-situ theories is that they are able to explain endometriosis in women
without menses or endometrium. Nevertheless, several factors are against in-situ theories. If peritoneal
cells can easily undergo metaplastic transformation, endometriosis should be observed more frequently
in men, in the thoracic cavity, and with a uniform distribution in the peritoneum. Moreover, if coelomic
metaplasia resembles common metaplasia, the incidence of endometriosis should increase with
advancing age. Finally, although some evidence suggests that endometriosis has a higher prevalence
even in women with non-obstructive Müllerian abnormalities [32], other studies reported endometriosis
to be more frequent in patients with Müllerian anomalies and outflow obstruction, and not in Müllerian
anomalies as a whole [47,48].

2.2. The Transplantation Theory

In this category, the hypotheses are based on the concept that the stroma and glands of
endometriosis originate from the eutopic endometrium. Endometriosis is proposed as benign metastasis
of eutopic endometrium, which is displaced from the uterine cavity to another location inside the body
through different routes. Hematogenous, lymphatic, and iatrogenic (mechanical) spread of endometrial
or endometriotic cells can explain all uncommon extraperitoneal locations [49]. However, the most
popular theory was introduced by Sampson in 1927 based on clinical and anatomical observations.
Sampson proposed the retrograde menstruation theory that concludes that most endometriosis derives
from the reflux of eutopic endometrial fragments through the fallopian tubes during menstruation,
with subsequent implantation, transition from endometrium to endometriosis, and growth on and into
the peritoneum and the ovary [19–21]. In addition, Sampson recognized that retrograde menstruation
could not explain all forms of endometriosis and suggested venous dissemination or metaplasia as
alternate theories [19,20].

Over the years, a growing body of evidence has supported the “retrograde menstruation” theory,
and it is now the most accepted hypothesis for most forms of endometriosis. The most important
step was the demonstration that the tubal reflux of menstrual tissue is a common event in women
with patent fallopian tubes documented in 76-90% of women [6]. Blood was found in peritoneal fluid
by laparoscopy in 90% of women with patent tubes and only in 15% with occluded tubes during
the peri-menstrual period [50], and endometrial epithelial cells have been isolated in the peritoneal
fluid of women during the early proliferative phase [51]. The second step was the identification
of viable endometrium, single cells, and glandular structures in the shed menstrual tissue [52].
The demonstration that reflux of viable endometrium in the peritoneal cavity is a common event in
fertile age women was essential to consider the “retrograde menstruation” theory plausible.

Moreover, the anatomical distribution of endometriosis in the pelvis with higher prevalence in the
left side than in the right side, that is compatible with anatomical differences between the right and left
hemipelvis [53], and the distribution in the abdomen with higher prevalence in the right diaphragm
than in the left following the counter-clockwise distribution of peritoneal fluid [54], further supports
the “retrograde menstruation” theory [53–55].

However, the transplantation theories are unable to explain endometriosis in women with
Mayer–Rokitansky–Küster–Hauser syndrome, in adolescents before or shortly after menarche,
and in males [19,31,33–35,37]. Moreover, available evidence suggests that endometriosis is not
simply a transplanted normal endometrium. Numerous differences in hormone receptor levels,
as well as histological, morphological, and biological characteristics, were reported when comparing
endometriosis with eutopic endometrium, with only limited similarities. Although Sampson recognized
that endometriosis was different from endometrium "both in structure and in function” and noted a
transition from one to the other [19,20], his 1920s observations of a transition do not include all of the
inflammatory, chemical, immunologic, epigenetic and genetic changes that have been discovered the
last 40 years. Those changes require additional understanding of the transformation of any Müllerian
(endometrial or rest) or non-Müllerian cell to endometriosis. Furthermore, eutopic endometrium of
affected women is reported to have similar alterations of endometriotic lesions, that are not found in
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the eutopic endometrium of healthy women. This supports the hypothesis that the primary defect
might be rooted in eutopic endometrium of women with endometriosis, although the gap between
the incidence of refluxed menstruation and the incidence of endometriosis highlights the presence of
further mechanisms [2].

3. Behind the Origins of Endometriosis

Although the origin of endometrial-like tissue that constitutes endometriosis is theoretical and
debated, it is generally agreed that endometriosis is a phenomenon that may occur in all women during
reproductive age, close laparoscopic examination of otherwise healthy peritoneum and microscopic
examination of resected bowel can reveal almost microscopic or minimal peritoneal lesions [56–58],
and many, if not most, of the small lesions tend to resolve or become inactive spontaneously. Therefore,
only a subset of women with endometriosis develops a disabling disease regardless of the tissue
origin [17,18,24,25]. To understand the origin of endometriosis and the mechanisms that explain the
development of endometriosis as a disabling disease instead of spontaneous resolution, in vitro and
in vivo studies and immunohistochemical, genetic, and epigenetic analysis were conducted [59–61].
Some studies, typically based on in vitro and in vivo models, were developed to investigate the
stepwise formation of endometriotic lesions in order to test different specific hypotheses of the origin
of endometriosis and to identify mechanisms that allow endometriotic lesion development [59,60].
Conversely, other studies, typically immunohistochemical, genetic, and epigenetic analysis, focused
the investigation on the identification of prerequisites for the development of the disease instead of
spontaneous resolution, comparing ectopic with eutopic endometrium in affected women or comparing
parameters between affected and unaffected women [54,62–64]. Overall, this growing body of evidence
suggests that endometriosis is not simply ectopic endometrium, with many reported differences
between the endometrial-like tissue of endometriosis and eutopic endometrium in affected women [65].
However, this data has not clarified when replanted endometrium or Müllerian remnants begin
the transition from ectopic Müllerian tissue to endometriosis, or when non-Müllerian stem cells are
committed to differentiate into endometriosis. At the same time, when women with symptomatic
endometriosis are compared with women without or minimal disease, the differences were reported
not only at the level of endometriosis implants but even at the level of eutopic endometrium [66],
uterus [67], and peritoneal environment [68].

3.1. Comprehensive Models on the Origin of Endometriosis

The induction theory was tested by in vivo studies on rabbit models. Endometrium was implanted
in the abdominal cavity, and tissue was histologically evaluated for seven days [44]. Endometrial
implants degenerated during the first four days, and cysts and endometrium-like differentiation were
observed in the next three days in the surrounding connective tissue. If the tissue was dissociated before
implantation, better results were obtained. These findings were further confirmed in a study in which
viable and ischemic endometrial tissue was implanted intraperitoneally in rabbits within Millipore
filters, that allowed only chemical substances to pass due to the small pore size [45]. Endometrium-like
epithelium and glands were observed in the connective tissue adjacent to the implants. Although these
changes did not include stroma, these observations support the hypothesis that endometrial tissue
liberates specific substances inducing undifferentiated mesenchyme to develop into endometrial tissue.

Conversely, investigating the possibility that retrograde menstruation of shed endometrium is
the origin of endometriosis, a chicken chorioallantoic membrane (CAM) model, an in vitro model
that uses the membrane covering the chicken embryo, was used to study the stepwise endometriotic
lesion formation involved in this process [69]. Tissue can be transplanted onto CAM and interventions
can be carried out, allowing the behavior of the tissue and the consequences of interventions to
be observed. In order to visualize the different steps of “retrograde menstruation” theory, human
menstrual endometrial fragments were collected and were transplanted onto the CAM. After 24, 48,
and 72 hours, cross-sections of the CAMs were cut and immunohistochemically stained. After 24 hours,
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direct contact was present between menstrual tissue fragments and the CAM mesenchyme. After 48 h,
the menstrual endometrium was reorganized inside the CAM mesenchyme, and after 72 hours, a
complete endometrium with glands and stroma was present in the CAM mesenchyme. Moreover,
blood vessels attracted from the CAM were present inside the endometrium fragment. This model
showed that viable endometrium is necessary to form an endometriotic lesion, and that stroma and
glands of shed menstrual endometrium are able to adhere to and degrade the matrix and to induce
neo-angiogenesis in order to survive [70].

3.2. Role of Hormones

Why a transplanted or congenital ectopic endometrium develops into endometriosis is the source
of much research. The causes of this development include research on the role of estrogen and estrogen
receptors (ERs), the estrogen-dependent physiologic and molecular changes [71], the local levels of
estrogen [71,72], the role of estrogen in macrophage-nerve interaction [72], the effects of environmental
toxicants on estrogen signaling [73], and the intracellular estrogen production related to aromatase
activity. In addition, the normal control of cyclic estrogen and progesterone requires activation and
crosstalk of cAMP and progesterone mediated signaling pathways [74].

Intracellular production of estrogens has a key role in the pathogenesis of endometriosis,
particularly in post-menopausal women [75], as well as of other benign and malignant diseases
of the female reproductive tract. Aromatase P450 catalyzes the conversion of androgens to estrogens
and is physiologically expressed in different human tissues, including ovaries and adipose tissue, but
usually not in the endometrium [76,77].

In women with endometriosis, this enzyme has been found in both endometriotic tissue and
eutopic endometrium [77,78]. Moreover, in endometriosis the protective action of 17β-hydroxysteroid
dehydrogenase (17β-HSD) type 2 is lost due to enzymatic deficiency. 17β-HSD lowers the level of
the strong 17β-estradiol, converting it into the weak estrone, modulating the exposure to estrogens
action [79]. The local production of estrogens and the loss of protective mechanisms determine a higher
estradiol level that characterizes both endometriosis and eutopic endometrium of affected women,
as demonstrated by the higher estradiol level of menstrual effluent in women with endometriosis as
compared to controls [80]. Moreover, the increased estrogen production in endometriotic lesions and
eutopic endometrium determines a positive feedback loop resulting in further estrogen production
through the induction of cyclo-oxygenase type 2 (COX-2) enzyme. The subsequently elevated levels of
prostaglandin E2 further stimulates the aromatase activity [78,81].

Of interest, the local production of estrogen was reported as a result of the activation of tissue
injury and repair (TIAR) mechanisms induced by microtrauma at the level of basal endometrial layer.
The basal endometrial layer has stem cell characteristics and exhibits the potential for dislocation and
proliferation, that was reported enhanced in women with endometriosis [82,83]. The fragments of
basal endometrium dislocated into the peritoneal cavity may induce chronic inflammation and TIAR
mechanisms, that activate local production of estrogen, proliferation, and infiltrative growth resulting
in endometriosis [67,84].

The estrogenic microenvironment was reported able to activate macrophages into peritoneum
with the consequent secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α)
and interleukin-1β (IL-1β) that stimulate the activation of NFkB. Moreover, these mechanisms induce
vascular endothelial growth factor (VEGF) expression, cell cycle activation, and activation of the
anti-apoptotic gene Bcl-2 [7,85] (Figure 1).

The key role of estrogens in endometriotic tissue survival and development is mediated by ERs.
Endometriotic tissue development was reported suppressed by ER-selective modulators inhibiting
estrogen receptor alfa (ERα) or beta (ERβ) [86], as well as ectopic implants did not develop normally
in ERα- or ERβ-knockout mice [87,88]. ERs have similar affinity for estrogens and are transcriptional
factors for similar subset of genes. Nevertheless, the differences between target genes, estrogen affinity,
and tissue distribution of ERα and ERβ homodimers as well as ERα/ERβ heterodimer explain the
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reciprocal inhibitory and regulatory functions, as well as the different roles [89]. Although ERαwas
historical investigated due to his higher prevalence in the uterus and the supposed inhibitory effect of
ERβ in the eutopic endometrium [90], in the endometriotic tissue ERαwas reported having a normal
expression level as compared to normal endometrium. Conversely, ERβwas reported overexpressed,
determining an inversion of ERβ to ERα ratio as compared to eutopic endometrium [91]. On that
basis, it was supposed that both the high estrogens concentration and the overexpression of ERβ are
involved in the estrogen-based ectopic tissue survival and development. At the cytoplasmatic level,
ERβwas reported involved in the inhibition and disruption of TNF-α-induced apoptosis signaling [88].
At nuclear level, ERβ was identified involved in the direct activation of the NFkB pathway and the
radical oxygen species detoxification system, that are able to improve cell survival and cell escaping
from immune clearance [92]. At the same time, ERβwas related to the upregulation of hypoxia-induced
signaling, epithelial mesenchymal transition signaling, and cytoskeleton components, that are all
involved in the invasion and progression of endometriotic implants [92].

The synergistic counterpart of estrogen overproduction and ERs overexpression is the progesterone
resistance in endometriotic tissue, that impedes to modulate genes involved in the decidualization, cell
cycle regulation, and estrogen response inhibition [93]. The progesterone resistance is a characteristic
of the endometriotic tissue as compared to the eutopic endometrium, although it was identified in the
eutopic endometrium of affected women as compared to controls [94].

The main mechanism involved in the progesterone resistance is the downregulation of progesterone
receptor (PR) in the ectopic tissue, that determines a variation in the expression of progesterone target
genes, such as the gene coding the 17β-HSD [93,95].

The pathways potentially underlining the PR suppression are multiple. The concentration of
pro-inflammatory cytokines, such as TNF-α and IL-1β involved in the chronic inflammation and
TIAR mechanisms, is reported directly correlated with PR expression [96]. The activation of NFkB
pathway by inflammation signaling determines a direct interaction with PR thorough an antagonist
effect [97]. Similarly, the persistent phosphorylation of AKT determined by inflammation is involved
in the inhibition of PR expression [98].

These mechanisms explain the progesterone resistance as an acquired characteristic of the
endometriotic tissue versus an individual predisposition. This is further supported by the inconsistent
results provided by genetic studies [99] and the involvement of epigenetic mechanisms, such as the
methylation of the gene and related promoter coding for the PR [100], and the higher expression of
miRNAs blocking the estrogen-dependent PR expression [101].
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endothelial growth factor (VEGF); Antiapoptotic protein B cell lymphoma 2 (Bcl-2); 17β-hydroxysteroid
dehydrogenase (17β-HSD).
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3.3. The Peritoneal Microenvironment and the Role of Immune Surveillance

The peritoneal fluid is produced by peritoneal and, mainly, ovarian exudation. It is a
microenvironment that contains different cells, such as immune cells, endometrial cells, and red blood
cells, which produce and secrete growth factors, angiogenic factors, and cytokines, that are able to affect
processes in the abdominal cavity [102]. Of note, studies reported shed endometrial cells differing
from eutopic cells; this may be explained by the different environments of bloodstream as compared to
the peritoneal fluid [2]. In the abdominal cavity, the menstrual effluent determines an inflammatory
response, of which physiological role is to clear the ectopic cells and tissue. Neutrophils, phagocytic
leukocytes, and chemotactic leukocytes are attracted from the circulation, where an increased influx of
bone marrow-derived cells is physiologically observed before the menstruation onset. Approximately
70-80% are macrophages CD14+, 20% are natural killer cells (NK cells) CD56+, and 10% are T-cells CD3+.
This system is suggested to be overwhelmed or insufficient in women with endometriosis [103–105].
Shorter intervals and longer menstrual periods with heavy blood flow, that are often reported in women
with endometriosis, may result in larger amounts of endometrial tissue collected in the abdominal
cavity that overwhelms this system of cleansing [106,107]. Larger endometrial tissue fragments may
provide protection from enzymatic and phagocytic activity to cells residing inside, that continue
to produce angiogenic factors due to continued hypoxia. Moreover, the overwhelmed capacity to
clean the peritoneum due to excessive refluxed endometrium may explain the higher prevalence
of some anatomical defects reported in women with endometriosis, such as uterine malformations
that prevent or disturb normal antegrade menstruation or that determine dysfunctional retrograde
contractions [47,48,108,109].

Moreover, in women with endometriosis, endometrial cells were more resistant to the cytolytic
action of autologous peritoneal macrophages than in healthy controls [110]. The cytotoxicity of
NK cells against endometrial cells was reported as decreased with an inverse correlation with the
stage of the disease [111]. Protection against the cytotoxicity of peritoneal NK cells seems to be
provided by an altered antigenicity due to the overexpression of human leukocyte antigen class
I [62,112]. Additionally, the eutopic endometrium of women with endometriosis releases higher levels
of the soluble form of intercellular adhesion molecule-1 (sICAM-1) than those of women without
endometriosis; and the ectopic endometrial cells express higher levels of sICAM-1 when compared to
their eutopic endometrium. sICAM-1 modulates the cytotoxic activity of NK and CD8+ cells competing
with ICAM-1 to bind leukocyte function antigen-1 (LFA-1). Binding of sICAM-1 to LFA-1 impedes
leukocytes to bind ICAM-1 on the surface of target cells, preventing leukocyte activation [113–115].
The inflammatory response in endometriosis is further accentuated by the increased expression
and activity of COX- 2, interleukins, and oxidative stress that act through the mitogen-activated
protein kinase (MAPK) pathways. The subsequent dysregulation of MAPK signaling pathways
increases inflammation, thereby recruiting immune cells and amplifying the inflammatory response.
Moreover, MAPK signaling increases expression of growth factors, determines the development of
pain and hypersensitivity to pain, and induces antiapoptotic signals. Of note, the dysregulation
of apoptotic pathways and subsequent resistance to apoptosis contribute to the failure of immune
clearance [116,117].

The failure to remove fragments of menstrual effluent from the abdominal cavity induces excessive
local inflammation with further and persistent activation of macrophages, which may secrete an altered
pattern of cytokines and chemokines. Evidence suggests that the number and activity level of peritoneal
macrophages are higher in women with endometriosis, but their cytotoxic power is reduced [118–120].
Compared to physiology, macrophages in the peritoneum of affected women are not destroyed after
completing their functions due to overexpression of the antiapoptotic protein Bcl-2, which protects them
from apoptosis [121]. Peritoneal macrophages imbalance in M1 and M2 macrophages was reported
in both eutopic and ectopic endometrium with upregulation of M2 type as compared to M1 type.
Compared to M1 macrophages, which produce inflammatory cytokines and eliminate microorganisms
and defective cells, the M2 macrophages modulate adaptive immune response, scavenge cellular
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debris, induce tissue repair, and induce angiogenesis. On that basis and experiments with macrophage
depletion, M2 macrophages are supposed to have a key role in endometriosis development [116,122].
Moreover, smaller amounts of pro-inflammatory cytokines modulating the activation of macrophages
(IL-6, IL-13, and IL-10 family) were produced and liberated in the eutopic endometrium of women
with endometriosis as compared to the endometrium of healthy controls, reducing their cytotoxic
capacity in the endometrium [120,123]. Production of IL-6 and MAPK activation in endometriotic cells
are furthermore regulated by the proteoglycan Syndecan-1 (CD138), which also acts as a modulator of
leukocyte and dendritic cell recruitment in mouse models of inflammation [124–126]. Studies reported
that pro-inflammatory cytokines of Th1 profile are prevalent in the early stages, while these change to
a Th2 profile in late stages, exerting an immunosuppressive effect and activating tissue injury-repair
mechanisms [127]. This is consistent with data reporting reduced activity of cytotoxic T cells, a relative
reduction of Th1 cell numbers, and a higher CD4/CD8 ratio in women affected by endometriosis
as compared to healthy controls. Moreover, women with endometriosis were reported with both
increased number and activation of B cells with an associated higher production of antibodies and
higher numbers of regulatory T cells [116,128,129]. It is supposed that this altered inflammatory
response may favor survival and implantation of ectopic endometrium with extracellular matrix (ECM)
remodeling and angiogenesis as well as may cause metaplasia of the peritoneum or the development
of Müllerian remnants, particularly overexpression of IL-1, IL-8, TNF-α [6,7]. Of interest, it is still
unclear whether this altered peritoneal microenvironment is a cause or a consequence of endometriosis.
Moreover, the presence of this altered inflammatory microenvironment could favor the implantation
and development of endometriosis from refluxed endometrium or induce coelomic metaplasia of in
situ mesothelium [20].

3.4. Apoptosis Defects

Cell turnover in human endometrium is regulated by apoptosis, which eliminates senescent cells
from the functional layer during menses. Although apoptosis is regulated by several genes with
variable expression during the menstrual cycle (bax, c-myc, and P53 induce it, while sentrin, B-cell
lymphoma/leukemia-xL, and Bcl-2 inhibit it), the variation of endometrial apoptosis in the menstrual
cycle seems to be primarily modulated by ovarian steroids through the up- and downregulation
of Bcl-2 and bax expression, from the expression level of bax depends on the Bcl-2 action. Bcl-2
maximum expression was reported during the proliferative phase when the estrogens production and
the expression of receptors in glandular cells is greatest [85,130–132].

In women with endometriosis, the eutopic endometrium is reported to exhibit significantly
reduced apoptosis compared to women without endometriosis, particularly in the late secretory,
menstrual, and early proliferative cycle phases. This may explain a reduced percentage of apoptotic
cells and a greater number of surviving cells entering the peritoneal cavity, which is a prerequisite
for the development of endometriosis [85,133–135]. The resistance to apoptosis could be related to
different mechanisms. Inappropriate signal transduction was related to the dysregulated expression of
proteins involved in the modulation of apoptosis, such as the increased expression of Bcl-2, that along
with bax represent the key proteins of apoptosis regulation in endometriosis [85]. Compared to the
cyclical activity of mTOR in eutopic endometrium, mTOR in endometriosis is constantly activated with
persistent inhibition of cell autophagy and apoptosis [136]. Further studies identified the altered and
excessive expression of the soluble-FasL in women with endometriosis, with subsequent dysregulated
interaction between Fas and FasL that represent a possible cause of apoptosis resistance in endometriotic
cells, in addition to immunoescaping. Of note, concomitant induced expression of FasL in stromal
cells seems to mediate apoptosis of activated immune cells [116,137]. A constant source of TNF-α
that initiates and modulates apoptosis during menses, and the absence of apoptosis induced by
signals from adhesion receptors in cells that do not adhere to the peritoneal mesothelium, such as
the E-cadherin suppression, are further mechanisms reported related to escape from apoptosis in
endometriosis [131,135]. Of note, accumulating evidence suggests that apoptotic resistance has a key
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role in the “immunoescaping” of endometriotic cells from immune homeostasis of the peritoneal
microenvironment [136] (Figure 2).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 41 
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3.5. Cell-Matrix and Cell-Cell Adhesion

Dysregulated cell-cell and cell-matrix adhesion has a role in the development of endometriosis [138].
Endometrial cells derived from proliferative and secretory endometrial fragments, as well as menstrual
endometrial fragments, are able to adhere to where the peritoneal mesothelium is damaged and the
basement membrane or the interstitial ECM are exposed. Although an intact mesothelial lining may
prevent adhesion and implantation of menstrual endometrial fragments, mesothelium can easily
be damaged by surgery, inflammatory cells, and menstrual endometrium [139–142]. Some studies
reported that isolated cells from menstrual endometrial fragments as well as non-cellular medium
prepared from menstrual effluent are able to induce morphological alterations in the mesothelium,
from an epithelial to a mesenchymal phenotype, and to damage it, creating its own adhesion sites at
the mesothelial lining [143–147].

Adhesion of retrograde menstrual endometrium to the peritoneum is mediated by adhesion
molecules that modulate cell-matrix and cell-cell attachments and are expressed by endometrial
cells, including cadherins, integrins, proteoglycans such as syndecans, laminin-binding proteins, the
immunoglobulin superfamily, and CD44. Integrins, syndecans, cadherins, CD44, and CD44’s binding
partner hyaluronan have been studied extensively in endometrium and in endometriosis [138].

The integrins are transmembrane glycoproteins that modulate cell-matrix attachment and are
involved in cell motility and invasion. The endometrial expression of integrins changes during the
menstrual cycle under hormonal regulation. Altered patterns of expression that have been associated
with endometriosis are able to express or to not express certain integrins independently of the hormones
without cyclical modifications. Endometriosis is reported to have an overall highly variable and aberrant
integrin expression as compared with eutopic endometrium. Fibronectin receptors were identified in
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glands of endometriosis implants but not in eutopic endometrial glands, suggesting that fibronectin
receptors may contribute to the adhesion of endometriotic cells during menstruation [148–152].

Moreover, differences were observed between the eutopic endometrium of affected women and
healthy women. The αvβ3 integrin is expressed in the endometrium at the time of implantation from
19-20 days of the menstrual cycle, and its absence suggests out of phase endometrium. In women
with endometriosis, αvβ3 integrin is constantly absent in the eutopic endometrium although in the
presence of in-phase histological features. This defect was associated with nulliparity and inversely
related to the stage of disease [152,153].

Another family of ECM receptors is formed by the syndecans, four transmembrane-anchored
proteoglycans that are expressed in the endometrium in a menstrual cycle-dependent manner [154].
Notably, the most ubiquitous member of the family, syndecan-4, was shown to be upregulated
in the eutopic endometrium of endometriosis patients compared to an IVF control collective, and
functional studies in an endometriotic cell line revealed that experimental syndecan-4 downregulation
resulted in reduced invasiveness in vitro, and reduced expression of the cytoskeletal modulator Rac1,
the transcription factor ATF-2, and MMP3 [155]. In addition, functional studies revealed a similar
invasion-modulating role for the epithelial member of the syndecans family, syndecan-1: siRNA
knockdown of this proteoglycan in endometriotic cells resulted in a substantial inhibition of Matrigel
invasiveness, which was accompanied by a reduction of IL-6 secretion, MMP9 expression and MMP2
activity, and upregulation of plasminogen activator inhibitor-1 protein [124]. Overall, these data
suggest that syndecans dysregulation in endometriosis contributes mechanistically to proteolytic
remodeling, alterations in cell motility, and the inflammatory microenvironment, thus promoting
invasive growth of endometriotic lesions.

Cadherins belong to a large family of transmembrane glycoproteins that mediate cell-cell adhesion
and may suppress invasion inhibiting the escape of cells from their primary site. In vitro, tumor
cells that express E-cadherin are retained by cell-cell adhesions, but when tumor cells do not express
E-cadherin are no longer constrained and can invade. Therefore, E-cadherin is considered a central
player in the development of cancer metastasis [156–159]. Immunohistochemical studies have reported
that epithelial-glandular cells of menstrual effluent, eutopic endometrium, peritoneal fluid, peritoneum,
and endometriosis express epithelial cadherin (E-cadherin), suggesting a role of E-cadherin in the
maintenance of the endometrial epithelial architecture [151,160]. Endometriosis cells may share
molecular mechanisms of invasion and metastasis with carcinoma cells that are related to the level of
E-cadherin expression [156,157].

Finally, expression of the transmembrane adhesion molecule and stem cell marker CD44 is
dysregulated in endometriosis [161], as exemplified by the correlation of high levels of soluble
CD44 in the serum and peritoneal fluid of endometriosis patients with the severity of the disease.
Indeed, preclinical data from animal models suggest that interference with CD44 function or
with its binding partner, the ECM carbohydrate hyaluronan, may be a worthwhile therapeutic
approach [162]. For example, inhibition of CD44 glycosylation was shown to decrease the attachment
of endometrial cell lines to peritoneal mesothelial cells [163], and transplantation of endometrium
from CD44-deficient mice into wild-type mice and vice versa resulting in a decreased formation
of endometriotic lesions in vitro [164], suggesting an important role of CD44 in the adhesion of
endometriotic cells to ectopic sites. Finally, pharmacological inhibition of biosynthesis of the CD44
substrate hyaluronan by 4-methylumbelliferone reduced angiogenesis in an in vivo mouse model of
endometriosis [165], suggesting that interference with the CD44-hyaluronan axis may represent an
approach that synchronously targets multiple molecular mechanisms of endometriosis.

3.6. Extracellular Matrix Remodeling and Matrix Metalloproteinases

The CAM models demonstrate that endometrium is able to adhere and subsequently degrade the
ECM, suggesting that endometriotic lesion development requires ECM breakdown. The breakdown
and remodeling of the ECM are mainly modulated by matrix metalloproteinases (MMPs) that degrade
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ECM components and are reported to be expressed by fragments of endometrium. MMPs are secreted
in a latent preform requiring activation to acquire proteolytic activity and are inhibited by specific tissue
inhibitors of MMPs (TIMPs). MMPs are structurally related but have different substrate specificity,
cellular sources, and inducibility. Based on their substrate specificity, MMPs can be classified into
collagenases, gelatinases, stromelysins, membrane-type MMPs, and other MMPs [166].

The activity of MMPs is modulated at the level of gene expression, at the level of latent proenzymes
activation, and at the level of the inhibitory activity of TIMPs. Gene expression is modulated by
hormones, growth factors, and inflammatory cytokines including IL-6, IL-1, epidermal growth factor,
TNF-α, basic fibroblast growth factor (bFGF), and platelet-derived growth factor. Secreted latent
proenzymes are activated by the stepwise activation of plasmin, which is considered the most potent
activator in vivo, and by the activity of membrane-type MMPs, that are present at the cell surface and
intracellularly. TIMPs are expressed by different types of cells and are present in the majority of tissues
and body fluids [167–169].

MMPs are involved with highly regulated activity in many reproductive processes, including
menstruation, ovulation, and embryo implantation [170,171]. The endometrial expression of MMPs is
low during the proliferative phase, declines further during the early secretory phase and increases
in the late secretory phase. Although MMPs activity in the endometrium is regulated by different
hormones, cytokines, and growth factors, progesterone is a potent repressor both in vitro and in vivo.
Progesterone might regulate MMP expression indirectly through the plasminogen activator pathway,
increasing the levels of plasminogen activator inhibitor (PAI)-1 and thus reducing the plasmin-mediated
activation of latent MMPs [172–174]. Moreover, locally produced retinoic acid and transforming
growth factor-β (TGF-β) seem to be mediators of the progesterone suppression enhancing expression of
TIMPs. Nevertheless, prematurely decreased progesterone levels not consistent with the peri-menstrual
increased expression of MMPs and tissue degradation at focal points rather than throughout the
different expression and regulation of MMPs entire endometrium are more likely than progesterone to
be the primary modulator of endometrial collagenase activity [175–177].

After the initial attachment, the development of endometriotic lesion requires the invasion of
adjacent tissues through the ECM degradation regulated by MMPs activity. This role of MMPs in the
pathogenesis of endometriosis was proposed after finding ECM breakdown products in the peritoneal
fluid of affected women [174]. Later, studies with artificial induced endometriosis, in mice and in the
CAM, reported that endometriotic lesion development could be prevented by inhibiting the activity
of MMPs [178,179]. Moreover, different expression and regulation of MMPs were demonstrated in
women without and with endometriosis. This included an altered expression of specific MMPs and
related TIMPs with an increased MMP/TIMP ratio in women affected by endometriosis as compared
to healthy controls [63,166,180–186]. Specifically, in women with endometriosis, as compared to
healthy controls, the expression of MMPs was reported enhanced in the secretory phase dominated
by progesterone. In vitro studies reported an increased MMP-3 and MMP-7mRNA expression in the
eutopic endometrium of women affected by endometriosis in the secretory phase. These results suggest
that a contribution to the development of endometriosis comes from a defect in the response to the
suppressing action of progesterone, a form of progesterone insensitivity [187].

Furthermore, evidence suggests that MMPs cleave not only ECM components but may also
be implicated in the degradation of cytokines and growth factors, regulating tissue organization,
angiogenesis, and cell survival. Therefore, MMP activity seems to be able to influence the initial lesion
development as well as lesion survival and maintenance [188].

3.7. Angiogenesis

In CAM models, after 72 hours, a complete endometrium with glands and stroma was present
in the CAM mesenchyme, and blood vessels were attracted from the CAM inside the endometrium
fragment. These studies demonstrated that human endometrium is highly angiogenic and able
to attract blood vessels from the surrounding tissue [189]. Angiogenesis is induced when vascular
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growth factors exceed inhibiting factors, and, although it is reported altered in pathological conditions
such as cancer, chronic inflammation, and endometriosis, it is essential in a physiological process
such as wound healing, growth, pregnancy and menstrual cycle [190,191]. Therefore, endometrial
cells have physiologically angiogenic potential. In the eutopic endometrium during the menstrual
cycle, angiogenesis is modulated by many factors, of which VEGF appears to be the most important
for its ability to induce proliferation and migration of endothelial cell, vasodilation, and increased
vascular permeability [190]. In the proliferative phase, estradiol induces VEGF-A production in
endometrium resulting increased in the secretory phase and further increased prior to menstruation
when endometrium becomes hypoxic as a result of vasoconstriction [192,193].

Increased endothelial cell proliferation, increased micro-vessel density, and higher levels of
VEGF-A and angiopoietin-1 and -2mRNA expression were detected in the eutopic endometrium of
patients with endometriosis than in the eutopic endometrium of disease-free women. These factors
suggest a dysregulated angiogenic activity in the eutopic endometrium of women affected by
endometriosis [64,191,194–196].

Focused studies on the vascularization of endometriotic lesions compared the vascular density
and vessel diameter between white, black, and red lesions as well as between deep infiltrating
lesions and endometriomas. No differences in the numbers of vessels were reported between different
types of lesions, but red lesions have more vessels with a small diameter (<10 µm), whereas black
lesions have more vessels with a larger diameter (>20 µm) [197]. The observations of endothelial cell
proliferation with the development of blood vessels without smooth muscle in endometriotic lesions
suggest that VEGF-A and angiogenesis are of significant value, particularly in early lesions. This was
further suggested by studies investigating the soluble VEGF receptor sflt-1 that antagonizes VEGF-A
action and was reported able to reduce the number of lesions formed in mice after intraperitoneal
injection of endometrium [198]. More support to antiangiogenic therapy as effective in preventing the
development of endometriosis has been provided by CAM model studies, in which anti-human VEGF
factors administered to the CAM significantly decreased the vascular density of the CAM and prevented
endometriosis-like lesion formation after the transplantation of human endometrium [199]. Moreover,
after endometriotic lesions had been induced by transplanting human endometrium intraperitoneally,
antiangiogenic agents resulted in a significant reduction of the number of endometriotic lesions in
treated mice compared to control. The reduction in lesion number was related to a reduction of
newly developed vessels, with mature vessels remaining unchanged [200,201]. Although VEGF is the
key angiogenetic factor in endometriosis, further factors were reported involved in the angiogenesis
of endometriotic lesions, including TGF-α, TGF-β, bFGF, angiopoietin, and hepatocyte growth
factor [202–204]. Furthermore, recent results have indicated a role of the stem cell-related notch
signaling pathway in sprouting angiogenesis of endometriotic lesions in an in vivo model [205].

3.8. Endometrial Stem Cells

More recently, endometrial stem progenitor cells were proposed as cells that give rise to the
origin of endometriotic lesions, both ectopic or transplanted cells [206]. The human endometrium
is subject to profound changes in tissue structure and function during the menstrual cycle, and
the recovery of epithelial glands and stroma is produced by the endometrial progenitor stem cells
within the basal layer, although some studies have suggested the origin may also be from bone
marrow [206–208]. Endometrial stem cells demonstrated a high plastic capacity of differentiation by
the characterization of several lines of cells with a different expression pattern of cell surface markers,
endometrial localization, and clonal efficiency [209]. Recent evidence suggests the monoclonal origin
of endometriotic cells within ovarian endometriomas, while peritoneal implants were reported to be
polyclonal [210–212]. Moreover, as previously reported, the cells that give rise to endometriotic implants
must undergo migration, adhesion, proliferation, and induction of angiogenesis. The endometrial
stem cells have demonstrated the ability to activate all these characteristics [213]. As previously
reported, it is proposed that physical and biochemical injuries caused by inflammatory cytokines and
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reactive oxygen species trigger the activation of endometrial stem cells inducing local production of
estrogen and tissue injury-repair mechanisms such as cell cycle activation. On that basis, endometrial
stem progenitor cells may be involved in the etiopathogenesis of benign and malignant endometrial
aberrations such as endometriosis, endometrial hyperplasia, and endometrial cancer [214]. In general,
endometrial stem progenitor cells have a long lifespan and trigger epigenetic mechanisms of protection
from stress and senescence. They express genes such as Wnt/β-catenin, anti-apoptotic Bcl-2, cell
cycle regulatory genes, and enzymes to repair DNA damage [206,209]. For all these characteristics,
endometrial stem cells are supposed to be the cells that give rise to endometriotic implants instead
of differentiated endometrial tissue fragments [7]. Of interest, endometrial stem progenitor cells
can find their potential source from refluxed menstrual endometrium, Müllerian remnants from
embryogenesis, as well as an hematogenic origin from the recruitment of circulating stem cell of
bone marrow [215]. Notably, several stemness-associated molecular markers have been shown to be
upregulated in the eutopic endometrium and ectopic lesions of endometriosis patients, including Msi1,
SOX2, notch and numb [82,216,217], supporting the hypothesis of an involvement of stem cells in the
pathogenetic process. Preclinical studies demonstrated that the microRNAs miR-145 and miR-200b
were suitable tools to alter stemness-related properties of endometriotic cells, opening new therapeutic
perspectives [218,219].

4. The Genetics of Endometriosis

The etiopathogenesis of endometriosis is still undefined and debated. To better understand the
mechanism leading to the development of endometriosis as a disabling disease instead of spontaneous
resolution of peritoneal implants, genetic studies offer an approach of paramount importance [3,220–222].
The evidence for a genetic contribution to the development of endometriosis comes from epidemiological
studies that reported familial aggregation of the disease in humans [223–227] and primates [228].
Both hospital- and population-based studies reported higher rates of endometriosis among the relatives
of affected women compared to healthy controls [224,225,229]. A study based on siblings, twins and
familiars of affected woman reported a higher relative recurrence risk of 2.3 times as compared to the risk
in the general population, although it is difficult to perform an accurate estimation because the prevalence
in the general population is unknown and there is bias in the surgical diagnosis of endometriosis in
siblings [226] and in the daughters of endometriosis patients (personal observation of D.C.M.). A genetic
background for endometriosis was further supported by evidence that comes from larger studies in twins
and in the population of Iceland [225,226,230–232]. Monozygotic twins show higher concordance for
endometriosis than dizygotic twins [230,231], with intra-pair correlation rates of 0.52 versus 0.19 [232].
This data suggest that genetic factors influence about half of the risk for endometriosis development and
estimate a heritability of 51% [232]. Further evidence comes from studies in the rhesus macaque animal
model, that reported a familial aggregation of spontaneous endometriosis with a significantly higher
coefficient of recurrence risk for full siblings (0.75) as compared to maternal (0.26) and paternal (0.18)
half-siblings [228].

Although the familial aggregation of confounding risk factors, such as age at menarche, questioned
the real role of genetic background in endometriosis risk [233], current evidence supports the genetic
contribution to endometriosis development, and genetic approaches can be used to identify genes
having a role in endometriosis risk, allowing a better definition of the etiopathogenetic pathways.
Moreover, the identification of genetic markers may allow the development of more informative risk
predictors as compared to family history, a better understanding of the pathogenesis providing new
opportunities for drug discovery, and genetic profiles allow identification of co-morbidity, that may
improve diagnosis and treatments.

4.1. Candidate Gene Studies

A general approach to investigate the role of genes in the etiopathogenesis of diseases is the study
of specific candidate genes chosen based on the biological mechanisms known as contributors to the
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disease [234–238]. Nevertheless, for endometriosis, the definition of candidate genes is problematic
because of the limited knowledge of etiopathogenetic mechanisms that may involve many genetic
pathways and many genes.

Studies have investigated genes involved in sex steroid pathways, detoxification pathways,
cytokine signaling pathways, adhesion, and cell cycle regulation molecules and enzymes of the
ECM [234,238]. Based on the estrogen-dependent nature of endometriosis, genes from pathways of
sex hormones signaling and biosynthesis have been studied. These investigations provided limited
evidence supporting the association between either PR or ERα and endometriosis [237], although a
further large family-based study failed to demonstrate any association between endometriosis and
PR [99]. Similarly, conflicting results were reported for the association between the gene expression of
cytochrome P450 and endometriosis [239,240].

Detoxification pathways were investigated based on the supposed role of environmental
estrogens in the etiopathogenesis of endometriosis, reporting questionable evidence [73,241].
Glutathione S-transferase enzymes are involved in the detoxification of different toxic compounds
and carcinogens. Different studies investigated gene polymorphisms and reported evidence for an
increased risk of endometriosis in the presence of specific enzyme variants. Nevertheless, significant
heterogeneity between studies and publication bias suggests caution [235]. Similarly, a meta-analysis
of studies that investigated the association between polymorphisms in the detoxification enzyme
N-acetyltransferase 2 and endometriosis reported no association [236].

In general, many factors have contributed to the failure of candidate gene studies to provide
new insights into the pathogenesis of endometriosis. A few of the reported associations have been
investigated in an independent sample, as it is suggested before accepting the association with a
disease, and the majority of replications failed to confirm previous results [238]. Study power is
another cause of concerns both for initial and replication studies [242,243]. In complex diseases such as
endometriosis, many genes, as well as environmental factors, may contribute to the etiopathogenesis;
therefore, the effect size for the majority of common risk alleles is expected to be low, with odds ratios
having a range of 1.1–1.5 [244–246]. On that basis, large sample sizes are required, and most candidate
gene studies investigated small samples with inadequate power to detect the small contribution of all
genes contributing to the risk of endometriosis [238,247,248]. Moreover, publication bias of significant
compared to negative results [242,249], statistical and technical issues, and problems in experimental
design provides further concerns [237]. In general, many gene variants with small effects can be
considered associated with an increased risk of endometriosis [238].

4.2. Linkage and Association Studies

Linkage studies are performed in families with multiple cases and search for genomic regions
shared more frequently than expected between relatives affected by the disease. These regions likely
carry gene variants increasing the risk of developing the disease. These studies provided important
results in disease related to single-gene mutations with Mendelian segregation [250–252]. Due to the
high prevalence of endometriosis, the low recurrence in familiars, and the difficulties in ascertaining
the healthy subjects, the best design was to analyze pairs of sisters both affected [252].

A genome analysis of DNA samples from 1176 sister-pair with both laparoscopically confirmed
endometriosis and family members from Australian and UK was performed [253]. The study was
designed with a power of 80% to detect a region with a recurrence risk to sisters of 1.35 [226].
The analysis identified significant linkage on chromosome 10 and on chromosome 20, although
evidence for linkage was confirmed only in chromosome 10 for both Australian and UK families.
A separate linkage study was conducted in families with three or more affected women and identified
a significant linkage peak on chromosome 7p [254–256]. This suggests that in high-risk families, a
locus with high penetrance for endometriosis risk may be located in this region.

Nevertheless, linkage studies are limited by the ability to identify a genomic region of interest but
not a specific gene locus. Therefore, association studies are required to identify specific gene variants.
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Association studies, with or without family-based designs, compare gene variants frequency in women
with endometriosis versus healthy controls. Because most human genome variants are single-base
differences, methods to genotype large numbers of single nucleotide polymorphisms (SNPs) are now
used for both linkage and association studies. Of interest, common SNPs (with a population frequency
> 0.01) that are located close together are not independently inherited (linkage disequilibrium or
LD) [257]. Therefore, a SNP can act as a marker for others, allowing the identification of the common
variation in a particular region by typing a limited number of SNPs. With this technique, association
studies investigated chromosome seven and 10 linkage regions identifying several genes implicated in
endometriosis and endometrial cancer such as PTEN, homeobox protein EMX2, and the FGF receptor
2 gene (FGFR2). EMX2 is a transcription factor involved in the development of the reproductive tract
and in the cyclicity of eutopic endometrium [258–260]. PTEN regulates proliferation and survival of
cells and it is inactivated in the early events of endometrial hyperplasia development and ovarian and
endometrial cancer pathogenesis [261]. FGFR2 has been associated with endometrial and breast cancer
development [262,263]. Nevertheless, SNP studies, investigating common variants and variants related
to endometrial or breast cancer of these three genes, suggested that the linkage signal is not related to
these common variants, demonstrating no evidence for any association with the endometriosis [258,264].
However, a role for other unknown variants of these genes in the development of endometriosis cannot
be completely excluded. Moreover, the hypothesis that different families may have different mutations
of the same gene reduces the probability of identifying these specific variants. It is suggested that the
results of linkage studies may be caused by multiple different variants of the same gene; the variant is
the same across a single-family but is rare in the general population. Conversely, association studies
require that investigated variants are common in the general population [258,264].

4.3. Genome-Wide Association Studies

The complex and multifactorial etiopathogenesis of endometriosis contributes to the failure of
candidate gene, association, and linkage studies [245]. Genome-wide association (GWA) provided
a new tool to identify genetic variants related to complex human diseases, with the use of genetic
markers that include most of the common gene variants (up to 1 million SNPs) and can be screened in
a single analysis [257].

Nevertheless, study design, particularly the definition of characteristics, traits of the disease being
studied, and the choice of population controls, remains of paramount importance [265]. Moreover,
cases and controls need to be well matched for ethnicity to reduce the false-positive rate, and standard,
rigorous, and quality control procedures are required to reduce bias. Association results are reported
as significant for every SNP that show a significant association as points above a stringent threshold
determining the probability of finding a false positive. Once a genetic association is identified, replication
provides an important safeguard against false-positive results and gives an independent and better
estimate of the effect size [266]. The identified region can be subsequently examined to locate the genes
relative to association signals and analyze the variation pattern because SNPs statistically associated
with disease are probably not the causal variants, that usually are absent on the gene chip used for SNP
detection, but correlate with the common variants genotyped on the chip. The causal variants probably
lie near the regions of SNPs statistically associated with disease for the LD [267]. Of note, signals could
identify both areas of the genome with genes and intragenic regions identifying regulatory regions of
gene expression [244].

Well-powered endometriosis case-control GWA studies identified several genes as possible
candidates in the pathogenesis of endometriosis. A Japanese GWA study identified a significant
association with LD blocks of chromosome 1 near the cyclin-dependent kinase inhibitor 2B antisense
RNA (CDKN2BAS) and the wingless-type MMTV integration site family 4 (WNT4) gene [268].
A smaller Japanese GWA study reported a significant association with LD blocks near IL-1 alpha
proprotein. Notably, IL-1α has been shown to be elevated in both the peritoneal fluid and the serum
of infertile women with endometriosis compared to healthy controls [269,270]. In a United States
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GWA study, SNP-association with endometriosis was reported with LD blocks near nuclear factor
erythroid-derived 2-like 3 gene, typically expressed in placenta, and HOXA10 and HOXA11 genes,
two candidate genes of the homeobox A transcription factors family. HOXA10 and HOXA11 have key
roles in uterine embryogenesis and are expressed at high levels during the luteal phase. Of interest,
studies reported that HOXA10 levels were not increased in women affected by endometriosis leading
to infertility [271]. A meta-analysis incorporating available data about SNP-association reported
different SNPs in the gene of interest between European descents and Japanese, likely reflecting the
different genetic backgrounds of investigated populations. Nevertheless, WNT4 was confirmed as a
candidate gene for endometriosis, with a signal that overlaps completely with an association signal for
ovarian cancer, suggesting some common molecular pathways [220,222,271]. WNT4 is an interesting
candidate involved in female reproductive tract embryogenesis, ovarian follicle development, and
steroidogenesis. WNT4 was reported to be involved in numerous anomalies of the female genital tract.
Moreover, the signaling pathway of WNT genes and WNT/β-catenin were reported to be associated in
the control of different types of stem cells and in the resistance to apoptosis by the cell-cell interaction
mediated by cadherins [268,272–274].

The International ENDOGENE Consortium, in addition to using SNP–disease associations, applied
GWA data to investigate with statistical methods the percentage of disease risk variation attributable
to genetic variants, and whether the disease status in an independent sample can be predicted by the
disease status in another sample [226,275]. Analyses suggested that in moderate-to-severe endometriosis
(Revised American Fertility Society (rAFS) classification stages III-IV) genetic load is higher than in
minimal-to-mild disease (rAFS classification stages I-II) with strongest signals of SNP-association.
This was subsequently confirmed by prediction analyses with SNP data from moderate-to-severe
endometriosis of UK samples that predict moderate-to-severe disease in Australian samples better
than data from all endometriosis cases. These results were confirmed by inverted analysis [226,275].

A recent meta-analysis incorporating available data from 11 GWA case-control studies, involving
17,045 endometriosis cases and 191,596 controls, identified five new loci significantly associated
with endometriosis risk, that were reported involved in sex steroid hormones pathways. Overall,
GWA case-control studies have identified 19 independent SNPs associated with endometriosis risk.
Those include SNPs associated with endometriosis identified regions near the gene for ERα, regions
upstream of the beta subunit of follicle-stimulating hormone (FSH), and the Growth Regulating Estrogen
Receptor Binding 1 (GREB1), previously associated with breast cancer. Other regions identified genes
involved in cell migration, adhesion, and proliferation, such as WNT4. Nevertheless, together, these
identified SNPs are able to explain only 5.19% of the variance in endometriosis [220,222]. Therefore,
the combined effects of all identified genes explain only a small fraction of the estimated 51% heritability
of endometriosis [276]. This “missing” heritability may be explained, as reported for other complex
diseases, by the small effect size of multiple single variants that contribute to disease risk and do not
reach statistical significance. Additionally, SNPs on the current commercial chips may not tag well
causal variants. Functional genetic variants that contribute to susceptibility for some common diseases,
if rare, limit the performance of GWA studies that are designed to detect common variants and fail to
identify low-frequency alleles [277–280].

5. The Epigenetics of Endometriosis

It has been demonstrated that a single lesion of endometriosis is monoclonal [210–212] and, based on
gene expression profiling studies, a large number of genes are dysregulated in endometriosis [281–287].
Nevertheless, although the heritability of endometriosis is estimated to be 51% [232], it is difficult
to identify specific genes consistently associated with endometriosis and with predictive power in
identifying high-risk women [233,234]. During the development of endometriotic lesions from progenitor
cells, it was proposed that the aberrations are acquired sequentially and usually without any change in
the sequence of DNA (i.e., DNA mutations). Conversely, gene expression dysregulation in the cellular
lineage is acquired and maintained by epigenetic processes in a heritable manner. Therefore, sequentially
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acquired and inherited changes at the level of gene transcription, post-transcriptional modulations,
translation, and post-translational modifications are proposed as the common denominator explaining the
hormonal, immunological, molecular, histological and cellular aberrations that characterize endometriosis.
Furthermore, they may explain the SNPs-association with regulatory regions of gene expression instead
of gene loci and the small effect of multiple single-gene variants in GWA studies [244]. At the same time,
Bruner-Tran et al. [288] have investigated heritable epigenetic changes in mice in germ cells after exposure
to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and demonstrated a transgenerational occurrence of
several reproductive diseases that have been linked to endometriosis in women, although they could
not determine if those changes lead to the development of endometriosis or were a consequence of
the inflammatory nature of the disease. However, epigenetic markers occurring within the germline
of mice are inheritable and can positively or negatively affect offspring [289,290]. These epigenetic
changes potentially include a stable, heritable phenotype caused by chromosomal changes without
DNA sequence alterations if they escape epigenetic reprogramming. If so, they are essential in tissue
development and cell differentiation [291]. Moreover, epigenetic processes modulate phenomena such
as genomic imprinting and X chromosome inactivation, and they are involved in aging and disease
development [292–294]. Epigenetic processes involve dynamic changes in the chromatin structure
influencing gene expression. Chromatin architecture is modulated by methylation of DNA (hypo- and
hypermethylation correspond to gene expression and silencing, respectively), acetylation, ubiquitination,
ADP-ribosylation and SUMOylation of histone proteins; and by non-histone proteins DNA-binding [295].
Moreover, epigenetic processes involve the expression of microRNAs (miRNAs). MiRNAs interact with
mRNA, inhibiting translation, or inducing mRNA degradation [296–299]. In ectopic endometrial-like
cells of endometriosis, the cellular identity and gene expression programs are defined and maintained by
epigenetics that may have a key role in the pathogenesis. Of interest, these epigenetic aberrations are
dynamic and reversible and may have potential implications for diagnosis, prognosis, and therapy of the
disease. In summary, available evidence may suggest a role of epigenetics both in the development of
endometriosis lesions and in the heritability of the disease.

5.1. Epigenetics in the Eutopic Endometrium

Epigenetic processes are involved in numerous mechanisms that modulate the gene expression
in endometrial development during the menstrual cycle, resulting in coordinated functional and
morphological changes [300]. The global methylation level of eutopic endometrium was reported
higher in the proliferative phase as compared to the secretory phase of the menstrual cycle.
This hypermethylation is consistent with the expression level of DNA methyltransferases 1 (DNMT1)
that was reportedly higher in the proliferative and late secretory phase and lower in the mid-secretory
phase. A similar expression level was reported for DNMT3A and DNMT3B, for which the gene
expression levels were decreased by treatment with estrogen and progestin. Conversely, the expression
level of DNMT1 was reported to be unchanged by hormones either due to technical limitations of the
used method or because the estrogen and progestin act at the post-transcriptional level, reducing the
stability of DNMT1 protein [301].

Similarly, histone modifications by acetylation seem to be involved in endometrial function, with
histone acetylation levels reported as globally increased in the early proliferative phase and gradually
reduced in the late proliferative phase until ovulation [300]. The histone deacetylase 1 (HDAC1),
HDAC3, and two histone acetylases were reported to be constitutively expressed in the endometrium
during the menstrual cycle, with HDAC1 having a reduced expression level in the secretory phase [302].
Of note, HDAC inhibitors (HDACIs) were able to determine a differentiation and morphological
transformation in endometrium similar to the combined treatment with estrogen and progestin.
These results suggest that histone modifications may play a role in the control of decidualization
through the regulation of the function of ERs and PGE2-induced 17β-estradiol synthesis [4,303–305].

MiRNAs post-transcriptionally downregulate the expression of genes and seem to be involved in
endometrium development during the menstrual cycle, similar to acetylation and methylation [306–308].
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MiRNAs were identified in normal endometrium and in eutopic and ectopic endometrium of women
affected by endometriosis [101]. An inverse correlation was reported between the expression level
of specific miRNAs and the suppression of protein production derived from their target genes, such
as aromatase and COX-2 [309]. Moreover, estrogen and progestins were reported able to modify the
expression level of miRNAs in endometrial stromal and glandular epithelial cells. Progesterone may
oppose estrogen action by fine-tuning gene expression modulating miRNAs, which seems to suppress
genes involved in cycle progression and cell proliferation in the secretory-phase [309,310]. This involvement
of miRNAs in endometrial cyclicity is consistent with data suggesting that miRNAs seem to have a role in
embryo implantation and postnatal uterus development in the mouse [311,312].

5.2. Epigenetics in Endometriosis

Some forms of endometriosis could be considered an epigenetic disorder. A growing body of
evidence suggests that epigenetics processes have a key role in the pathogenesis and pathophysiology
of endometriosis [313]. Aberrant methylation, acetylation, post-translational modifications, and
dysregulation of miRNAs expression were identified in eutopic as well as ectopic endometrium of
affected woman and may have great potential as therapeutic targets or as biomarkers for diagnosis
and recurrence risk prediction [314].

The first piece of evidence suggesting the role of epigenetic in the etiopathogenesis of endometriosis
comes from studies reporting the hypermethylation of the HOXA10 gene promoter in eutopic
endometrium of women with endometriosis as compared with healthy controls [315,316]. HOXA10 is
a transcription factor belonging to the homeobox gene family and has a role in the development and
function of the uterus. Eutopic endometrium expresses HOXA10 during the menstrual cycle with a
high expression level in the mid-secretory phase. This high expression, corresponding to increased
progesterone levels and to the time of implantation, suggests that HOXA10 may have a key role in
establishing the conditions necessary for implantation [316]. Of interest, the hypermethylation of
the HOXA10 gene promoter, which means gene silencing, is consistent with studies reporting that
HOXA10 levels are reduced in the eutopic endometrium of women affected by endometriosis [271],
which may be a cause of the impaired fertility of these women [316]. Animal models further confirmed
the key role of HOXA10 gene silencing by promoter hypermethylation both in eutopic and ectopic
endometrium [317]. Moreover, animal models suggest that aberrant methylation of the HOXA10
promoter can be induced by in utero exposure to endocrine-disrupting chemicals (EDC) such as
diethylstilbestrol, with or without overexpression of DNMTs [318–320].

A growing body of evidence suggests that aberrant expression of interacting homeobox genes
and WNT family genes, particularly the WNT/β-catenin pathway, may disrupt organogenesis
of the urogenital tract, altering the cell differentiation/migration with ectopic implantation.
The WNT/β-catenin signaling pathway is involved in stem cell function and maintenance.
These pathways may support the Müllerian remnants hypothesis as well as may be implicated
in the survival and implantation of transplanted endometrial stem progenitor cells [7]. Indeed, data
suggest that estradiol supports disease progression by upregulating β-catenin, which is degraded
when it does not bind E-cadherin. The inhibition of phosphorylation stabilizes β-catenin that reach the
nucleus and interacts with transcription factors regulating proliferation and angiogenesis [61].

The epigenetic mechanism of methylation was identified as having a role in progesterone
resistance of endometriosis. Studies demonstrated that the promoter of PR-B gene is hypermethylated
in endometriosis and adenomyosis with subsequent reduced PR-B expression [321–323]. The relatively
permanent nature of hypermethylation of PR-B promoter provides further explanation to the persistent
PR-B downregulation and progesterone resistance in endometriosis.

Further evidence confirmed the role of dysregulated methylation in the etiopathogenesis of
endometriosis. Genes coding for three DNA methyltransferases, DNMT1, DNMT3A, and DNMT3B,
were reported to be overexpressed in endometriosis. The aberrant expression of these enzymes involved
in maintenance, as well as de novo methylation, suggests that hypermethylation in endometriosis
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may be widespread [324–326]. For example, in endometriotic cell lines lacking E-cadherin, whose
deregulation was associated with endometriotic cells invasiveness, the gene was hypermethylated,
suggesting that methylation of E-cadherin provides invasive properties [327,328]. Notably, E-cadherin
expression is also regulated by miR-200b expression, suggesting that this important anti-invasive
adhesion molecule is subject to epigenetic regulation [219]. Of interest, both hypoxia and inflammation
were reported distinctly able to modulate DNMTs expression and can cause aberrant DNA methylation
patterns [4,329].

Endometriosis has both epigenetic mechanisms of hypermethylation as well as hypomethylation.
The hypomethylation of specific genes and genes promoters that are hypermethylated in eutopic
endometrium explains the altered expression in endometriosis of genes usually silenced in eutopic
endometrium. Steroidogenic factor-1 (SF-1) is a transcriptional factor activating multiple genes for the
biosynthesis of estrogen. SF-1 is not detected in stromal cells of eutopic endometrium because SF-1
promoter is usually hypermethylated. In endometriotic cells, the SF-1 promoter was reported to be
hypomethylated, explaining the aberrant overexpression of SF-1 [330]. Similarly, the ER-β promoter
and the aromatase gene were hypomethylated in endometriotic cells, while in eutopic endometrium,
they are hypermethylated, providing an explanation as to why these genes are expressed in ectopic
but not in normal endometrium. Consistently, the gene coding for 17β-HSD type 2 was reported
hypermethylated. Moreover, the promoter of COX-2 was reported to be hypomethylated, explaining
the higher expression of COX-2 and subsequent prostaglandin E2 synthesis, which in turn enhances
17β-estradiol production and elevate DNMT3A [4,314,331–333] (Figure 3).
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Figure 3. Epigenetic mechanisms of hypermethylation and hypomethylation involved in the
etiopathogenesis of endometriosis. Hypoxia and inflammation regulate DNA methylation through
microRNAs (miRNA), and genes coding for three DNA methyltransferases (DNMT) were reported
overexpressed in endometriosis. microRNAs (miRNA); DNA methyltransferases (DNMT); Homeobox
A transcription factor (HOXA10); Progesterone receptor B (PR-B); 17β-hydroxysteroid dehydrogenase
(17β-HSD); Steroidogenic factor-1 (SF-1); Estrogen receptor β (ER-β); Cyclo-oxygenase type 2 (COX-2);
Prostaglandin E2 (P-E2); Estrogen (E); Progesterone (P).
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Regarding the epigenetic regulation by histone acetylation, the balance between the HDACs
and histone acetyltransferase activity regulates the gene transcription. Gene expression is promoted
by the acetylation of lysine residue by the histone acetyltransferase, whereas is inhibited trough the
removal of acetyl group by the HDACs [334]. Endometriotic lesions as well as eutopic endometrium
of affected women were reported globally hypoacetylated as compared to the eutopic endometrium
of controls, with consequent gene silencing [335]. This observation was consistent with the reported
higher expression of HDAC1 and HDAC2 genes and lower levels of SIRT1 in the endometriotic lesions.
Moreover, the lost modulation of HDAC expression by estrogen and progesterone was reported in
ectopic implants [335–337].

Different genes are known to be involved in the etiopathogenesis of endometriosis by the
methylation of their promoters and subsequent downregulation. The same genes and others were
reported having the promoter hypoacetylated as well, such as the genes coding ER-α, HOXA10,
E-cadherin, and different proapoptotic proteins involved in the cell cycle regulation [335,338].

The global aberrant acetylation is able to explain the altered expression of different genes both for
downregulation by hypoacetylation and upregulation by hyperacetylation of the promoter, such as the
higher level of SF-1 and hypoxia-inducible factor-1α [335,339].

Interestingly, recent evidence founds not only somatic inactivating mutations of the tumor
suppressor ARID1A but also the loss of its expression in endometriotic foci [340]. ARID1A is known
to encode the protein BAF250a, which participates in forming SWI/SNF chromatin remodeling
complexes. Considering that this gene is frequently mutated in ovarian clear cell and endometrioid
carcinomas as well as in uterine endometrioid carcinomas, the epigenetic loss of expression of
BAF250a may underlie (at least in part) the potential degeneration of endometriotic tissue toward
carcinogenesis. In particular, the loss of expression of the protein encoded by ARID1A (BAF250a)
can dysregulate the suppression of cellular proliferation, which is normally modulated through a
p53-dependent transcription fashion of several tumor suppressors, including CDKN1A (encoding p21)
and SMAD3 [341]. Indeed, published data highlighted that tissue samples from patients who had
undergone surgery for endometriosis-associated ovarian cancers or endometriotic ovarian cysts show
loss of BAF250a expression in 22% endometrioid cancers, 47% of clear cell cases, 44% of contiguous
endometriosis cases, and 8% of benign endometriotic ovarian cysts; in addition, the expression
of phosphorylated AKT, γH2AX, BIM, and BAX was higher in endometriosis-associated ovarian
cancers and contiguous endometriosis than in benign endometriosis, whereas expression of pATM,
pCHK2, and Bcl2 was low [342]. Based on these pieces of evidence, the mutation of ARID1A and/or
the loss of expression of BAF250a may appear as a promising strategy for molecular diagnosis of
endometriosis-associated ovarian cancer [343].

The epigenetic post-transcriptional mRNA modulation by miRNAs expression has a potential
role in the etiopathogenesis of endometriosis [4]. MiRNAs interacting with the correspondent
mRNAs downregulate gene expression. Different studies report progressively different expression
of many specific miRNAs from eutopic endometrium of healthy women, paired eutopic and ectopic
endometrium of women with endometriosis, and ectopic endometrium. Most of these identified
miRNAs target genes known to be differentially expressed in eutopic versus ectopic endometrium.
Identified miRNA target genes includes those involved in hormone metabolism such as aromatase, PR,
ER-α, and ER-β [310]; modulators of the inflammatory response such as COX-2, IL-6, IL-6 receptor, IL-8,
and TGF-β; and the induction of apoptosis and angiogenesis such as Bcl-2, cyclin-D, and VEGF [4,136].
The inverse correlation between the expression level of miRNAs and that of target genes supports
the hypothesis that altered expression of these specific miRNAs is involved in the pathogenesis of
endometriosis [344]. Both upregulated and downregulated expression of specific miRNAs were reported
in ectopic endometrium as compared with eutopic endometrium of women with endometriosis [345],
as well as in eutopic or ectopic endometrium of women affected by endometriosis as compared
with eutopic endometrium of healthy controls [346]. Functional studies in preclinical cell models of
endometriosis have confirmed a mechanistic involvement of selected microRNAs in pathogenetically
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relevant processes, including modulation of cell proliferation by miR-10b and miR-145, of invasive
growth by miR-10b, miR-200b, and miR-145, and of stem cell properties, as exemplified by miR-145 and
miR-200b [124,218,219]. Of interest, although there is a discrepancy between studies in the identification
of miRNAs having altered expression, no miRNAs were “misclassified.” These discrepancies can be
explained by differences in study design and compared tissues. The comparison between eutopic and
ectopic endometrium of affected women may not identify miRNAs associated with endometriosis that
are aberrantly expressed in the same direction in both tissues. Finally, it should be noted that the role
of miRNAs is more complex than a unidirectional negative regulation of gene expression. Evidence
supports that many miRNAs are able to interact with transcription factors forming a network for gene
regulation that yield negative as well as positive feedback loops [347]. Moreover, miRNAs have been
reported to be both targets and regulators of other epigenetic mechanisms such as methylation and
acetylation, and they resulted involved in hypoxia and inflammation signaling pathways [4,344].

5.3. Implications of Epigenetics in Diagnosis, Prognosis, and Therapy

The identification of epigenetic aberrations may provide promising tools for the diagnosis of
endometriosis. DNA methylation markers, as well as other epigenetic aberrations that are present in
the eutopic endometrium of women with endometriosis and absent in healthy controls, are present in
the menstrual blood-derived from eutopic endometrium. The identification of these markers in the
menstrual blood could provide high sensitivity and specificity in the identification of endometriosis
with a minimally invasive approach [4,294]. These epigenetic markers may also provide prognostic
information identifying patients at high risk of recurrence, allowing the tailoring of postoperative
therapies and follow-up. For example, hypermethylation of the PR-B promoter identified in surgical
tissue samples of endometriotic implants was related to a higher risk of recurrence [321,348].

The therapeutic implications are based on the reversible nature of epigenetic modifications.
Therefore, enzymes involved in epigenetic mechanisms could be pharmacological targets. On that
basis, HDACIs were investigated in vitro and in animal models as a potential therapy for endometriosis.
In vitro, treatment with trichostatin A (TSA), an HDACI, elevated PR-B gene and protein expression,
inhibited IL-1β-induced COX-2 expression, and inhibited cellular proliferation with cell cycle arrest
in ectopic endometrial stromal cells, but not in eutopic cells [349–351]. In endometrial stromal cells,
TSA upregulated Peroxisome proliferator-activated receptor (PPAR)γ expression which inhibits VEGF
expression, angiogenesis, and TNF-induced IL-8 production [352–354]. Moreover, TSA attenuated
invasion inducing E-cadherin expression [327]. In animal models with induced endometriosis, TSA
represses endometriosis, reducing the size of ectopic implants as compared with no-treatment [59,355].
Treatments with other HDACIs and demethylation agents in both in vitro and in vivo studies provided
similar promising results [59,323,356].

Data about the use of HDACI in humans derives from the use of Valproic Acid (VPA), an
HDACI with known pharmacology. In women with adenomyosis, VPA reduces the amount of menses
and dysmenorrhea. This could be explained by the fact that HDACIs suppress the expression of
TNF-α-induced tissue factor and VEGF receptor as reported in both in vitro and in vivo studies.
Both these pathways are involved in abnormal uterine bleeding and resulted in overexpressed in
endometriosis [357–360]. VPA tested on patients was well tolerated, and after two months had reduced
pain symptoms, reduced amount of menses, and reduced uterine size [361–363]. This evidence suggests
that HDACIs have a potential role as therapy in endometriosis and/or adenomyosis [364].

6. Conclusions

The etiopathogenesis of endometriosis is a multifactorial process that leads to the development
of an extremely heterogeneous disease characterized by the variable acquisition and loss of cellular
functions. Its origin would appear to be from Müllerian or non-Müllerian stem cells with endometrial
differentiation that can potentially originate from stem cells of the endometrial basal layer, present in
Müllerian remnants, in the blood originating from bone marrow, or from the peritoneum. These stem
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cells have the ability of the endometrium to regenerate cyclically by mechanisms of tissue regeneration
and angiogenesis in response to hypoxia, which seem to play a key role when they are dysregulated
in the development of endometriosis. What determines the presence of such cells in the peritoneal
cavity can occur during the development of the embryos as well as during each menstrual cycle, and
what leads to the development of endometriosis is a complex process in which play a large number of
interconnected factors potentially both inherited and acquired. Genetic studies have confirmed that
endometriosis has a genetic nature, but at the same time, this predisposition is complex. It is constituted
by the combined action of several genes with limited influence. At the same time, the epigenetic
mechanisms underlying endometriosis control many of the processes of acquisition and maintenance
of immunologic, immunohistochemical, histological and biological aberrations that characterize both
the eutopic and ectopic endometrium in patients affected by endometriosis. However, what triggers
such epigenetic alterations is not clear and may be both genetically and epigenetically inherited, or it
may be acquired by the particular combination of several factors linked to the persistent presence of
menstrual reflux in the peritoneal cavity as well as exogenous factors playing a critical role. Once started,
the process is variable and can lead to the development of endometriosis through the progressive
acquisition of alterations to the physiological processes of the endometrium, including the altered
hormonal physiology, and modulating the interaction between endometriosis and the inflammatory
response by subjugating it. However, the heterogeneity of endometriosis and the different contexts in
which it develops suggests that a single etiopathogenetic explaining model is not sufficient.
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Abbreviations

MeSH Medical Subject Headings
CAM Chorioallantoic membrane
17β-HSD 17β-hydroxysteroid dehydrogenase
COX-2 Cyclo-oxygenase type 2
TIAR Tissue injury and repair
TNF Tumor necrosis factor
IL Interleukin
VEGF Vascular endothelial growth factor
Bcl-2 Antiapoptotic protein B cell lymphoma 2
NK cells Natural Killer cells
sICAM-1 Soluble form of intercellular adhesion molecule-1
LFA-1 Leukocyte function antigen-1
MAPK Mitogen-activated protein kinase
ECM Extracellular matrix
HLA-1 Human leukocyte antigen class I
INF Interferon
TGF-β Transforming growth factor-β
E-cadherin Epithelial cadherin
MMPs Matrix metalloproteinases
TIMPs Tissue inhibitors of MMPs
bFGF Basic fibroblast growth factor
PAI Plasminogen activator inhibitor
PR Progesterone receptor
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ER Estrogen receptor
SNPs Single nucleotide polymorphisms
LD Linkage disequilibrium
FGF Fibroblast growth factor
FGFR2 FGF receptor 2 gene
GWA Genome-wide association
CDKN2BAS Cyclin-dependent kinase inhibitor 2B antisense RNA
MMTV Mouse mammary tumor virus
WNT4 Wingless-type mouse mammary tumor virus integration site family 4
rAFS Revised American Fertility Society
FSH Follicle-stimulating hormone
GREB1 Growth Regulating Estrogen Receptor Binding 1
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
miRNAs microRNAs
DNMT DNA methyltransferase
HDAC Histone deacetylase
HDACIs Histone deacetylase inhibitors
EDC Endocrine-disrupting chemicals
SF-1 Steroidogenic factor-1
HOXA10 Homeobox A transcription factor
P-E2 Prostaglandin E2
E Estrogen
P Progesterone
TSA Trichostatin A
PPAR Peroxisome proliferator-activated receptor
VPA Valproic acid
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